Thermoelectric properties of gated Si nanowires

نویسندگان

  • N. Neophytou
  • H. Kosina
چکیده

The thermoelectric (TE) performance of materials is determined by the figure of merit ZT=σS/κ, where σ denotes the electrical conductivity, S the Seebeck coefficient and κ the thermal conductivity. Large improvements in ZT have recently been reported in nanoscale materials due to drastic reduction in κ. Despite this improvement, however, ZT still remains too low for allowing large scale TE deployment, mainly because the power factor (σS) has not been improved so far. A possible way to improve σS is the use of gating rather than doping to achieve the required high charge densities [1]. This removes the strongest scattering mechanism that hinders carrier transport and yields higher conductivity. In this work, we compute the TE power factor in gated Si nanowires (NWs) and compare it to the power factor of doped NWs. We show that although gated structures suffer from reduced Seebeck coefficient, the power factor can be improved by ~5x.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gated Si nanowires for large thermoelectric power factors

We investigate the effect of electrostatic gating on the thermoelectric power factor of p-type Si nanowires (NWs) of up to 20nm in diameter in the [100], [110] and [111] crystallographic transport orientations. We use atomistic tight-binding simulations for the calculation of the NW electronic structure, coupled to linearized Boltzmann transport equation for the calculation of the thermoelectri...

متن کامل

Determining factors of thermoelectric properties of semiconductor nanowires

It is widely accepted that low dimensionality of semiconductor heterostructures and nanostructures can significantly improve their thermoelectric efficiency. However, what is less well understood is the precise role of electronic and lattice transport coefficients in the improvement. We differentiate and analyze the electronic and lattice contributions to the enhancement by using a nearly param...

متن کامل

Field-effect modulation of Seebeck coefficient in single PbSe nanowires.

In this Letter, we present a novel strategy to control the thermoelectric properties of individual PbSe nanowires. Using a field-effect gated device, we were able to tune the Seebeck coefficient of single PbSe nanowires from 64 to 193 microV x K(-1). This direct electrical field control of sigma and S suggests a powerful strategy for optimizing ZT in thermoelectric devices. These results repres...

متن کامل

Full-Band Calculations of Thermoelectric Properties of Si Nanowires and Thin Layers

Low-dimensional semiconductors are considered promising candidates for thermoelectric applications with enhanced performance because of a drastic reduction in their thermal conductivity, κl, and possibilities of enhanced power factors. This is also the case for traditionally poor thermoelectric materials such as silicon. This work presents atomistic simulations for the electronic, thermal, and ...

متن کامل

Modulation of thermoelectric power factor via radial dopant inhomogeneity in B-doped Si nanowires.

We demonstrate a modulation of thermoelectric power factor via a radial dopant inhomogeneity in B-doped Si nanowires. These nanowires grown via vapor-liquid-solid (VLS) method were naturally composed of a heavily doped outer shell layer and a lightly doped inner core. The thermopower measurements for a single nanowire demonstrated that the power factor values were higher than those of homogeneo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014