A high-throughput digital imaging screen for the discovery and directed evolution of oxygenases.
نویسندگان
چکیده
BACKGROUND Oxygenases catalyze the hydroxylation of a wide variety of organic substrates. An ability to alter oxygenase substrate specificities and improve their activities and stabilities using recombinant DNA techniques would expand their use in processes such as chemical synthesis and bioremediation. Discovery and directed evolution of oxygenases require efficient screens that are sensitive to the activities of interest and can be applied to large numbers of crude enzyme samples. RESULTS Horseradish peroxidase (HRP) couples the phenolic products of hydroxylation of aromatic substrates to generate colored and/or fluorescent compounds that are easily detected spectroscopically in high-throughput screening. Coexpression of the coupling enzyme with a functional mono- or dioxygenase creates a pathway for the conversion of aromatic substrates into fluorescent compounds in vivo. We used this approach for detecting the products of the toluene-dioxygenase-catalyzed hydroxylation of chlorobenzene and to screen large mutant libraries of Pseudomonas putida cytochrome P450cam by fluorescence digital imaging. Colors generated by the HRP coupling reaction are sensitive to the site of oxygenase-catalyzed hydroxylation, allowing the screen to be used to identify catalysts with new or altered regiospecificities. CONCLUSIONS The coupled oxygenase-peroxidase reaction system is well suited for screening oxygenase libraries to identify mutants with desired features, including higher activity or stability and altered reaction specificity. This approach should also be useful for screening expressed DNA libraries and combinatorial chemical libraries for hydroxylation catalysts and for optimizing oxygenase reaction conditions.
منابع مشابه
Application of a very high-throughput digital imaging screen to evolve the enzyme galactose oxidase.
Directed evolution has become an important enabling technology for the development of new enzymes in the chemical and pharmaceutical industries. Some of the most interesting substrates for these enzymes, such as polymers, have poor solubility or form highly viscous solutions and are therefore refractory to traditional high-throughput screens used in directed evolution. We combined digital imagi...
متن کاملFDA approved drugs repurposing of Toll-like receptor4 (TLR4) candidate for neuropathy
Accumulating evidence indicates that toll-like receptor 4 (TLR4) plays a critical role in promoting adaptive immune responses and are definitively involved in the expansion and maintenance of the neuropathic pain. However, the application of docking in virtual-screening in silico methods to drug discovery has some challenge but it allows us to make the directed and meaningful design of drugs fo...
متن کاملFDA approved drugs repurposing of Toll-like receptor4 (TLR4) candidate for neuropathy
Accumulating evidence indicates that toll-like receptor 4 (TLR4) plays a critical role in promoting adaptive immune responses and are definitively involved in the expansion and maintenance of the neuropathic pain. However, the application of docking in virtual-screening in silico methods to drug discovery has some challenge but it allows us to make the directed and meaningful design of drugs fo...
متن کاملNootropic Medicinal Plants; Evaluating Potent Formulation By Novelestic High throughput Pharmacological Screening (HTPS) Method
The principle of this method was to screen the pharmacological activity of six prepared polyphyto formulations by using high throughput screening method for their nootropic action. The study was performed in three stages using one, two and three animals, respectively in a group. Test formulations were given p.o daily at the dose of 50 and 100 mg/kg body weight. The test formulations were compar...
متن کاملAdd-on for High Throughput Screening in Material Discovery for Organic Electronics: “Tagging” Molecules to Address the Device Considerations
This work reflects the worth of intelligent modeling in controlling the nanostructure morphology in manufacturing organic bulk heterojunction (BHJ) solar cells. It suggests the idea of screening the pool of material design possibilities inspired by machine learning. To fulfill this goal, a set of experimental data on a BHJ solar cell with a donor structure of diketopyrrolopyrrole (DDP) and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry & biology
دوره 6 10 شماره
صفحات -
تاریخ انتشار 1999