SID-1 is a dsRNA-selective dsRNA-gated channel.

نویسندگان

  • Joseph D Shih
  • Craig P Hunter
چکیده

Systemic RNAi in Caenorhabditis elegans requires the widely conserved transmembrane protein SID-1 to transport RNAi silencing signals between cells. When expressed in Drosophila S2 cells, C. elegans SID-1 enables passive dsRNA uptake from the culture medium, suggesting that SID-1 functions as a channel for the transport of double-stranded RNA (dsRNA). Here we show that nucleic acid transport by SID-1 is specific for dsRNA and that addition of dsRNA to SID-1 expressing cells results in changes in membrane conductance, which indicate that SID-1 is a dsRNA gated channel protein. Consistent with passive bidirectional transport, we find that the RNA induced silencing complex (RISC) is required to prevent the export of imported dsRNA and that retention of dsRNA by RISC does not seem to involve processing of retained dsRNA into siRNAs. Finally, we show that mimics of natural molecules that contain both single- and double-stranded dsRNA, such as hairpin RNA and pre-microRNA, can be transported by SID-1. These findings provide insight into the nature of potential endogenous RNA signaling molecules in animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The SID-1 double-stranded RNA transporter is not selective for dsRNA length.

The double-stranded RNA (dsRNA) transport protein SID-1 enables systemic RNA interference (RNAi) in Caenorhabditis elegans, whereby silencing initiated by local exposure to dsRNA spreads throughout the animal and to its progeny. Previously, we showed that providing dsRNA in the growth medium of Drosophila S2 cells that express C. elegans SID-1 efficiently triggers RNAi. In these experiments lon...

متن کامل

SID-1 domains important for dsRNA import in C. elegans

In the nematode Caenorhabditis elegans, RNA interference (RNAi) triggered by doublestranded RNA (dsRNA) spreads systemically to cause gene silencing throughout the organism and its progeny. We confirm that Caenorhabditis nematode SID-1 orthologs have dsRNA transport activity and demonstrate that the SID-1 paralog CHUP-1 does not transport dsRNA. Sequence comparison of these similar proteins, in...

متن کامل

SID-1 Domains Important for dsRNA Import in Caenorhabditis elegans

In the nematode Caenorhabditis elegans, RNA interference (RNAi) triggered by double-stranded RNA (dsRNA) spreads systemically to cause gene silencing throughout the organism and its progeny. We confirm that Caenorhabditis nematode SID-1 orthologs have dsRNA transport activity and demonstrate that the SID-1 paralog CHUP-1 does not transport dsRNA. Sequence comparison of these similar proteins, i...

متن کامل

Double-stranded RNA made in C. elegans neurons can enter the germline and cause transgenerational gene silencing.

An animal that can transfer gene-regulatory information from somatic cells to germ cells may be able to communicate changes in the soma from one generation to the next. In the worm Caenorhabditis elegans, expression of double-stranded RNA (dsRNA) in neurons can result in the export of dsRNA-derived mobile RNAs to other distant cells. Here, we show that neuronal mobile RNAs can cause transgenera...

متن کامل

Transport of dsRNA into cells by the transmembrane protein SID-1.

RNA interference (RNAi) spreads systemically in plants and nematodes to silence gene expression distant from the site of initiation. We previously identified a gene, sid-1, essential for systemic but not cell-autonomous RNAi in Caenorhabditis elegans. Here, we demonstrate that SID-1 is a multispan transmembrane protein that sensitizes Drosophila cells to soaking RNAi with a potency that is depe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RNA

دوره 17 6  شماره 

صفحات  -

تاریخ انتشار 2011