Symplectic Submanifolds from Surface Fibrations

نویسندگان

  • Ivan Smith
  • IVAN SMITH
چکیده

We give a simple construction yielding homology classes in (non-simply-connected) symplectic four-manifolds which admit infinitely many pairwise non-isotopic symplectic representatives. Examples are constructed in which the symplectic curves can have arbitrarily large genus. The examples are built from surface bundles over surfaces and involve only elementary techniques. As a corollary we see that a blow-up of any simply-connected complex projective surface contains a connected symplectic surface not isotopic to any complex curve.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On hyperelliptic C∞-Lefschetz fibrations of four-manifolds

We show that hyperelliptic symplectic Lefschetz fibrations are symplectically birational to two-fold covers of rational ruled surfaces, branched in a symplectically embedded surface. This reduces the classification of genus 2 fibrations to the classification of certain symplectic submanifolds in rational ruled surfaces.

متن کامل

Bounded Cohomology and Non-uniform Perfection of Mapping Class Groups

Using the existence of certain symplectic submanifolds in symplectic 4-manifolds, we prove an estimate from above for the number of singular fibers with separating vanishing cycles in minimal Lefschetz fibrations over surfaces of positive genus. This estimate is then used to deduce that mapping class groups are not uniformly perfect, and that the map from their second bounded cohomology to ordi...

متن کامل

Calibrated Fibrations on Complete Manifolds via Torus Action

In this paper we will investigate torus actions on complete manifolds with calibrations. For Calabi-Yau manifolds M with a Hamiltonian structure-preserving k-torus action we show that any symplectic reduction has a natural holomorphic volume form. Moreover Special Lagrangian (SLag) submanifolds of the reduction lift to SLag submanifolds of M , invariant under the torus action. If k = n− 1 and H...

متن کامل

Poisson Fibrations and Fibered Symplectic Groupoids

We show that Poisson fibrations integrate to a special kind of symplectic fibrations, called fibered symplectic groupoids.

متن کامل

On Singular Fibres of Complex Lagrangian Fibrations

We classify singular fibres over general points of the discriminant locus of projective complex Lagrangian fibrations on 4-dimensional holomorphic symplectic manifolds. The singular fibre F is the following either one: F is isomorphic to the product of an elliptic curve and a Kodaira singular fibre up to finite unramified covering or F is a normal crossing variety consisting of several copies o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001