Subunits of the Drosophila Actin-Capping Protein Heterodimer Regulate Each Other at Multiple Levels
نویسندگان
چکیده
The actin-Capping Protein heterodimer, composed of the α and β subunits, is a master F-actin regulator. In addition to its role in many cellular processes, Capping Protein acts as a main tumor suppressor module in Drosophila and in humans, in part, by restricting the activity of Yorkie/YAP/TAZ oncogenes. We aimed in this report to understand how both subunits regulate each other in vivo. We show that the levels and capping activities of both subunits must be tightly regulated to control F-actin levels and consequently growth of the Drosophila wing. Overexpressing capping protein α and β decreases both F-actin levels and tissue growth, while expressing forms of Capping Protein that have dominant negative effects on F-actin promote tissue growth. Both subunits regulate each other's protein levels. In addition, overexpressing one of the subunit in tissues knocked-down for the other increases the mRNA and protein levels of the subunit knocked-down and compensates for its loss. We propose that the ability of the α and β subunits to control each other's levels assures that a pool of functional heterodimer is produced in sufficient quantities to restrict the development of tumor but not in excess to sustain normal tissue growth.
منابع مشابه
Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila.
The conserved Hippo tumor suppressor pathway is a key kinase cascade that controls tissue growth by regulating the nuclear import and activity of the transcription co-activator Yorkie. Here, we report that the actin-Capping Protein αβ heterodimer, which regulates actin polymerization, also functions to suppress inappropriate tissue growth by inhibiting Yorkie activity. Loss of Capping Protein a...
متن کاملSynergies between Aip1p and capping protein subunits (Acp1p and Acp2p) in clathrin-mediated endocytosis and cell polarization in fission yeast
Aip1p cooperates with actin-depolymerizing factor (ADF)/cofilin to disassemble actin filaments in vitro and in vivo, and is proposed to cap actin filament barbed ends. We address the synergies between Aip1p and the capping protein heterodimer Acp1p/Acp2p during clathrin-mediated endocytosis in fission yeast. Using quantitative microscopy and new methods we have developed for data alignment and ...
متن کاملVertebrate Isoforms of Actin Capping Protein β Have Distinct Functions in Vivo
Actin capping protein (CP) binds barbed ends of actin filaments to regulate actin assembly. CP is an alpha/beta heterodimer. Vertebrates have conserved isoforms of each subunit. Muscle cells contain two beta isoforms. beta1 is at the Z-line; beta2 is at the intercalated disc and cell periphery in general. To investigate the functions of the isoforms, we replaced one isoform with another using e...
متن کاملAcanthamoeba castellanii capping protein: properties, mechanism of action, immunologic cross-reactivity, and localization
We report further characterization of the physical and immunologic properties, mechanism of action, and intracellular localization of Acanthamoeba castellanii capping protein, an actin regulatory protein discovered by Isenberg (Isenberg, G., U. Aebi, and T. D. Pollard, 1980, Nature (Lond.) 288:455-459). The native molecular weight calculated from measurements of Stokes' radius (3.8 nm by gel fi...
متن کاملPivotal and distinct role for Plasmodium actin capping protein alpha during blood infection of the malaria parasite
Accurate regulation of microfilament dynamics is central to cell growth, motility and response to environmental stimuli. Stabilizing and depolymerizing proteins control the steady-state levels of filamentous (F-) actin. Capping protein (CP) binds to free barbed ends, thereby arresting microfilament growth and restraining elongation to remaining free barbed ends. In all CPs characterized to date...
متن کامل