Ela Analysis and Reformulation of Linear Delay Differential - Algebraic Equations
نویسندگان
چکیده
General linear systems of delay differential-algebraic equations (DDAEs) of arbitrary order are studied in this paper. Under some consistency conditions, it is shown that every linear highorder DAE can be reformulated as an underlying high-order ordinary differential equation (ODE) and that every linear DDAE with single delay can be reformulated as a high-order delay differential equation (DDE). Condensed forms for DDAEs based on the algebraic structure of the system coefficients are derived and these forms are used to reformulate DDAEs as strangeness-free systems, where all constraints are explicitly available. The condensed forms are also used to investigate structural properties of the system like solvability, regularity, consistency and smoothness requirements.
منابع مشابه
Analysis and reformulation of linear delay differential-algebraic equations
General linear systems of delay differential-algebraic equations (DDAEs) of arbitrary order are studied in this paper. Under some consistency conditions, it is shown that every linear highorder DAE can be reformulated as an underlying high-order ordinary differential equation (ODE) and that every linear DDAE with single delay can be reformulated as a high-order delay differential equation (DDE)...
متن کاملA numerical method for solving delay-fractional differential and integro-differential equations
This article develops a direct method for solving numerically multi delay-fractional differential and integro-differential equations. A Galerkin method based on Legendre polynomials is implemented for solving linear and nonlinear of equations. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations. A conver...
متن کاملAnalysis of Linear Variable Coefficient Delay Differential-algebraic Equations
The analysis of general linear variable coefficient delay differential-algebraic systems (DDAEs) is presented. The solvability for DDAEs is investigated and a reformulation procedure to regularize a given DDAE is developed. Based on this regularization procedure existence and uniqueness of solutions and consistency of initial functions is analyzed as well as other structural properties of DDAEs...
متن کاملEla Characterization of Classes of Singular Linear Differential-algebraic Equations∗
Linear, possibly overor underdetermined, differential-algebraic equations are studied that have the same solution behavior as linear differential-algebraic equations with well-defined strangeness index. In particular, three different characterizations are given for differential-algebraic equations, namely by means of solution spaces, canonical forms, and derivative arrays. Two levels of general...
متن کاملTECHNISCHE UNIVERSITÄT BERLIN Analysis and Reformulation of Linear Delay Di erential-Algebraic Equations
In this paper, we study general linear systems of delay di erential-algebraic equations (DDAEs) of arbitrary order. We show that under some consistency conditions, every linear high-order DAE can be reformulated as an underlying high-order ordinary di erential equation (ODE) and that every linear DDAE with single delay can be reformulated as a high-order delay di erential equation (DDE). We der...
متن کامل