Exceptionally stable fluorous emulsions for the intravenous delivery of volatile general anesthetics.
نویسندگان
چکیده
BACKGROUND IV delivery of volatile fluorinated anesthetics has a number of potential advantages when compared with the current inhalation method of administration. We reported previously that the IV delivery of sevoflurane can be achieved through an emulsion composed of a linear fluorinated diblock copolymer, a stabilizer, and the anesthetic. However, this original emulsion was subject to particle size growth that would limit its potential clinical utility. We hypothesized that the use of bulkier fluorous groups and smaller polyethylene glycol moieties in the polymer design would result in improved emulsion stability while maintaining anesthetic functionality. METHODS The authors prepared emulsions incorporating sevoflurane, perfluorooctyl bromide as a stabilizing agent, and combinations of linear fluorinated diblock copolymer and a novel dibranched fluorinated diblock copolymer. Emulsion stability was assessed using dynamic light scattering. The ability of the emulsions to induce anesthesia was tested in vivo by administering them intravenously to 15 male Sprague-Dawley rats and measuring loss of the forepaw righting reflex. RESULTS 20% (volume/volume) sevoflurane emulsions incorporating mixtures of dibranched and linear diblock copolymers had improved stability, with those containing an excess of the dibranched polymers displaying stability of particle size for more than 1 yr. The ED50s for loss of forepaw-righting reflex were all similar, and ranged between 0.55- 0.60 ml/kg body weight. CONCLUSIONS Hemifluorinated dibranched polymers can be used to generate exceptionally stable sevoflurane nanoemulsions, as required of formulations intended for clinical use. IV delivery of the emulsion in rats resulted in induction of anesthesia with rapid onset and smooth and rapid recovery.
منابع مشابه
Fluoropolymer-based emulsions for the intravenous delivery of sevoflurane.
BACKGROUND The intravenous delivery of halogenated volatile anesthetics has been previously achieved using phospholipid-stabilized emulsions, e.g., Intralipid. However, fluorinated volatile anesthetics, such as sevoflurane, are partially fluorophilic and do not mix well with classic nonfluorinated lipids. This effect limits the maximum amount of sevoflurane that can be stably emulsified in Intr...
متن کاملThe anesthesia in abdominal aortic surgery (ABSENT) study: a prospective, randomized, controlled trial comparing troponin T release with fentanyl-sevoflurane and propofol-remifentanil anesthesia in major vascular surgery.
BACKGROUND On the basis of data indicating that volatile anesthetics induce cardioprotection in cardiac surgery, current guidelines recommend volatile anesthetics for maintenance of general anesthesia during noncardiac surgery in hemodynamic stable patients at risk for perioperative myocardial ischemia. The aim of the current study was to compare increased troponin T (TnT) values in patients re...
متن کاملPropofol and other intravenous anesthetics have sites of action on the gamma-aminobutyric acid type A receptor distinct from that for isoflurane.
Both volatile and intravenous general anesthetics allosterically enhance gamma-aminobutyric acid (GABA)-evoked chloride currents at the GABA type A (GABAA) receptor. Recent work has revealed that two specific amino acid residues within transmembrane domain (TM)2 and TM3 are necessary for positive modulation of GABAA and glycine receptors by the volatile anesthetic enflurane. We now report that ...
متن کاملT-type Calcium Channels in Mice Does Not Change Anesthetic Requirements for Loss of the Righting Reflex and Minimum Alveolar Concentration but Delays the Onset of Anesthetic Induction
Background: T-type calcium channels regulate neuronal membrane excitability and participate in a number of physiologic and pathologic processes in the central nervous system, including sleep and epileptic activity. Volatile anesthetics inhibit native and recombinant T-type calcium channels at concentrations comparable to those required to produce anesthesia. To determine whether T-type calcium ...
متن کاملEffects of Intravenous Anesthetics on Ca Sensitivity in Canine Tracheal Smooth Muscle
Background: Halothane and other volatile anesthetics relax airway smooth muscle in part by decreasing the amount of force produced for a particular intracellular calcium concentration (the Ca sensitivity) during muscarinic receptor stimulation. In this study, ketamine, propofol, and midazolam were evaluated to determine whether the inhibitory effect of volatile anesthetics on this signal transd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesiology
دوره 116 3 شماره
صفحات -
تاریخ انتشار 2012