Variability of Air–Sea Interactions over the Indian Ocean Derived from Satellite Observations
نویسندگان
چکیده
Novel ways of monitoring the large-scale variability of the southwest monsoon in the Indian Ocean are presented using multispectral satellite datasets. The fields of sea surface temperature (SST), surface latent heat flux (LHF), net surface solar radiation (SW), precipitation (P), and SW 2 LHF over the Indian Ocean are analyzed to characterize the seasonal and interannual variability with special emphasis on the period 1988–90. It is shown that satellite data are able to make a significant contribution to the multiplatform strategy necessary to describe the large-scale spatial and temporal variability of air–sea interactions associated with the Indian Ocean Monsoon. The satellite data analyzed here has shown for the first time characteristics of the interannual variability of air–sea interactions over the entire Indian Ocean. Using monthly means of SST, LHF, SW, P, and the difference SW 2 LHF, the main features of the seasonal and interannual variability of air–sea interactions over the Indian Ocean are characterized. It is shown that the southwest monsoon strongly affects these interactions, inducing dramatic exchanges of heat between air and sea and large temporal variations of these exchanges over relatively small timescale (with regards to typical oceanic timescales). The analyses indicate an overall good agreement between satellite and in situ (ship) estimates, except in the southern Indian Ocean, where ship sampling is minimal, the disagreement can be large. In the latitudinal band of 108N–158S, differences in climatological in situ estimates of surface sensible heat flux and net longwave radiation has a larger influence on the net surface heat flux than the difference between satellite and in situ estimates of SW and LHF.
منابع مشابه
Distribution Modeling of Bigeye Tuna (Thunnus obesus Lowe, 1839), Using Satellite Derived Environmental Variables in Indian Ocean
Understanding effects of environment on the distribution of economic fish is a fundamental step in the ecosystem-based management and ultimately a standard approach in management policies. Bigeye tuna (Thunnus obesus) is one of the most important aquatic species harvested in the Indian Ocean. The present study investigated the association of different variables effecting the rate of catch and d...
متن کاملGravity acceleration at the sea surface derived from satellite altimetry data using harmonic splines
Gravity acceleration data have grand pursuit for marine applications. Due to environmental effects, marine gravity observations always hold a high noise level. In this paper, we propose an approach to produce marine gravity data using satellite altimetry, high-resolution geopotential models and harmonic splines. On the one hand, harmonic spline functions have great capability for local gravity ...
متن کاملIndian Ocean SST, evaporation, and precipitation during the South Asian summer monsoon in IPCC-AR4 coupled simulations
The veracity of modeled air–sea interactions in the Indian Ocean during the South Asian summer monsoon is examined. Representative simulations of the twentieth century climate, produced by coupled general circulation models as part of the Intergovernmental Panel on Climate Change Fourth Assessment Report, are the analysis targets along with observational data. The analysis shows the presence of...
متن کاملLarge-Scale Oceanic Variability Associated with the Madden-Julian Oscillation during the CINDY/DYNAMO Field Campaign from Satellite Observations
During the CINDY/DYNAMO field campaign (fall/winter 2011), intensive measurements of the upper ocean, including an array of several surface moorings and ship observations for the area around 75°E–80°E, Equator-10°S, were conducted. In this study, large-scale upper ocean variations surrounding the intensive array during the field campaign are described based on the analysis of satellite-derived ...
متن کاملLeast Squares Techniques for Extracting Water Level Fluctuations in the Persian Gulf and Oman Sea
Extracting the main cyclic fluctuations from sea level changes of the Persian Gulf and Oman Sea is vital for understanding the behavior of tides and isolating non-tidal impacts such as those related to climate and changes in the ocean-sea circulations. This study compares two spectral analysis methods including: Least Squares Spectral Analysis (LSSA) and Least Squares Harmonic Estimation (LSHE)...
متن کامل