Hirzebruch invariants of symmetric products

نویسنده

  • Jörg Schürmann
چکیده

These notes are an expanded version of the talk given by the first author at the conference “Topology of Algebraic Varieties”, organized in honor of Anatoly Libgober’s 60-th anniversary. We provide here a very elementary proof of a generating series formula for the Hodge polynomials (with coefficients) of symmetric products of quasi-projective varieties. A more general result was recently obtained by the authors by using λ-structures and Adams operations on Grothendieck groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Hirzebruch invariants of elliptic fibrations

We compute all Hirzebruch invariants χq for D5, E6, E7 and E8 elliptic fibrations of every dimension. A single generating series χ(t, y) is produced for each family of fibrations such that the coefficient of tkyq encodes χq over a base of dimension k, solely in terms of invariants of the base of the fibration. ♣Email: jfullwoo at math.fsu.edu, hoeij at math.fsu.edu

متن کامل

Symmetric Products of Mixed Hodge Modules

Generalizing a theorem of Macdonald, we show a formula for the mixed Hodge structure on the cohomology of the symmetric products of bounded complexes of mixed Hodge modules by showing the existence of the canonical action of the symmetric group on the multiple external self-products of complexes of mixed Hodge modules. We also generalize a theorem of Hirzebruch and Zagier on the signature of th...

متن کامل

Hirzebruch Classes of Complex Hypersurfaces

The Milnor-Hirzebruch class of a locally complete intersection X in an algebraic manifold M measures the difference between the (Poincaré dual of the) Hirzebruch class of the virtual tangent bundle of X and, respectively, the Brasselet-Schürmann-Yokura (homology) Hirzebruch class of X . In this note, we calculate the Milnor-Hirzebruch class of a globally defined algebraic hypersurface X in term...

متن کامل

The Double Gromov-witten Invariants of Hirzebruch Surfaces Are Piecewise Polynomial

We define the double Gromov-Witten invariants of Hirzebruch surfaces in analogy with double Hurwitz numbers, and we prove that they satisfy a piecewise polynomiality property analogous to their 1-dimensional counterpart. Furthermore we show that each polynomial piece is either even or odd, and we compute its degree. Our methods combine floor diagrams and Ehrhart theory.

متن کامل

Characteristic Classes of Complex Hypersurfaces

The Milnor-Hirzebruch class of a locally complete intersection X in an algebraic manifold M measures the difference between the (Poincaré dual of the) Hirzebruch class of the virtual tangent bundle of X and, respectively, the Brasselet-Schürmann-Yokura (homology) Hirzebruch class of X. In this note, we calculate the Milnor-Hirzebruch class of a globally defined algebraic hypersurface X in terms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010