The complexity of planar graph choosability 1
نویسنده
چکیده
A graph G is k-choosable if for every assignment of a set S(v) of k colors to every vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from S(v). We consider the complexity of deciding whether a given graph is k-choosable for some constant k. In particular, it is shown that deciding whether a given planar graph is 4-choosable is NP-hard, and so is the problem of deciding whether a given planar triangle-free graph is 3-choosable. We also obtain simple constructions of a planar graph which is not 4-choosable and a planar triangle-free graph which is not 3-choosable.
منابع مشابه
Edge-choosability and total-choosability of planar graphs with no adjacent 3-cycles
Let G be a planar graph with no two 3-cycles sharing an edge. We show that if ∆(G) ≥ 9, then χ′l(G) = ∆(G) and χ ′′ l (G) = ∆(G) + 1. We also show that if ∆(G) ≥ 6, then χ ′ l(G) ≤ ∆(G) + 1 and if ∆(G) ≥ 7, then χ′′ l (G) ≤ ∆(G) + 2. All of these results extend to graphs in the projective plane and when ∆(G) ≥ 7 the results also extend to graphs in the torus and Klein bottle. This second edge-c...
متن کاملAcyclic improper choosability of graphs
We consider improper colorings (sometimes called generalized, defective or relaxed colorings) in which every color class has a bounded degree. We propose a natural extension of improper colorings: acyclic improper choosability. We prove that subcubic graphs are acyclically (3,1)∗-choosable (i.e. they are acyclically 3-choosable with color classes of maximum degree one). Using a linear time algo...
متن کاملChoosability and edge choosability of planar graphs without five cycles
It is proved that a planar graph G without five cycles is three degenerate, hence, four choosable, and it is also edge-(A( G) + l)h c oosable. @ 2002 Elsevier Science Ltd. All rights reserved. Keywords-Choosability, Edge choosability, Degeneracy, Planar graph.
متن کاملA Generalization of Kotzig's Theorem and Its Application
An edge of a graph is light when the sum of the degrees of its endvertices is at most 13. The well-known Kotzig Theorem states that every 3-connected planar graph contains a light edge. Later, Borodin [1] extended this result to the class of planar graphs of minimum degree at least 3. We deal with generalizations of these results for planar graphs of minimum degree 2. Borodin, Kostochka and Woo...
متن کاملThe complexity of planar graph choosability
A graph G is k-choosable if for every assignment of a set S(v) of k colors to every vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from S(v). We consider the complexity of deciding whether a given graph is k-choosable for some constant k. In particular, it is shown that deciding whether a given planar graph is 4-choosable is NP-hard, and so is the problem o...
متن کامل