An Adaptive Framework for Managing Heterogeneous Many-Core Clusters
نویسنده
چکیده
The computing needs and the input and result datasets of modern scientific and enterprise applications are growing exponentially. To support such applications, High-Performance Computing (HPC) systems need to employ thousands of cores and innovative data management. At the same time, an emerging trend in designing HPC systems is to leverage specialized asymmetric multicores, such as IBM Cell and AMD Fusion APUs, and commodity computational accelerators, such as programmable GPUs, which exhibit excellent price to performance ratio as well as the much needed high energy efficiency. While such accelerators have been studied in detail as stand-alone computational engines, integrating the accelerators into large-scale distributed systems with heterogeneous computing resources for data-intensive computing presents unique challenges and trade-offs. Traditional programming and resource management techniques cannot be directly applied to many-core accelerators in heterogeneous distributed settings, given the complex and custom instruction sets architectures, memory hierarchies and I/O characteristics of different accelerators. In this dissertation, we explore the design space of using commodity accelerators, specifically IBM Cell and programmable GPUs, in distributed settings for data-intensive computing and propose an adaptive framework for programming and managing heterogeneous clusters. The proposed framework provides a MapReduce-based extended programming model for heterogeneous clusters, which distributes tasks between asymmetric compute nodes by considering workload characteristics and capabilities of individual compute nodes. The framework provides efficient data prefetching techniques that leverage general-purpose cores to stage the input data in the private memories of the specialized cores. We also explore the use of an advanced layered-architecture based software engineering approach and provide mixin-layers based reusable software components to enable easy and quick deployment of heterogeneous clusters. The framework also provides multiple resource management and scheduling policies under different constraints, e.g., energy-aware and QoS-aware, to support executing concurrent applications on multi-tenant heterogeneous clusters. When applied
منابع مشابه
Adaptive Dynamic Data Placement Algorithm for Hadoop in Heterogeneous Environments
Hadoop MapReduce framework is an important distributed processing model for large-scale data intensive applications. The current Hadoop and the existing Hadoop distributed file system’s rack-aware data placement strategy in MapReduce in the homogeneous Hadoop cluster assume that each node in a cluster has the same computing capacity and a same workload is assigned to each node. Default Hadoop d...
متن کاملAssessment of Clustering Methods for Predicting Permeability in a Heterogeneous Carbonate Reservoir
Permeability, the ability of rocks to flow hydrocarbons, is directly determined from core. Due to high cost associated with coring, many techniques have been suggested to predict permeability from the easy-to-obtain and frequent properties of reservoirs such as log derived porosity. This study was carried out to put clustering methods (dynamic clustering (DC), ascending hierarchical clustering ...
متن کاملMorphable hundred-core heterogeneous architecture for energy-aware computation
Given the increased demand for high performance and energy-aware computational platforms, an adaptive heterogeneous computing platform composed of 100+ cores is herein proposed. The platform is based on an aggregate of multiple processing clusters, each containing multiple processing cores, whose architectures are adapted, in execution time, to the instantaneous energy and performance constrain...
متن کاملPower-Aware Core Management Scheme for Heterogeneous Many-Core Architecture
OF THE THESIS Power-Aware Core Management Scheme for Heterogeneous Many-Core Architecture By Myoung-Seo Kim Master of Science in Computer Engineering University of California, Irvine, 2015 Professor Jean-Luc Gaudiot, Chair The main challenge in designing the future heterogeneous many-core architecture on the same chip is to provide a solution that has low power consumption, in addition to trade...
متن کاملExtending and Implementing the Self-adaptive Virtual Processor for Distributed Memory Architectures
Many-core architectures of the future are likely to have distributed memory organizations and need fine grained concurrency management to be used effectively. The Self-adaptive Virtual Processor (SVP) is an abstract concurrent programming model which can provide this, but the model and its current implementations assume a single address space shared memory. We investigate and extend SVP to hand...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011