Perceived Surface Slant Is Systematically Biased in the Actively-Generated Optic Flow

نویسندگان

  • Carlo Fantoni
  • Corrado Caudek
  • Fulvio Domini
چکیده

Humans make systematic errors in the 3D interpretation of the optic flow in both passive and active vision. These systematic distortions can be predicted by a biologically-inspired model which disregards self-motion information resulting from head movements (Caudek, Fantoni, & Domini 2011). Here, we tested two predictions of this model: (1) A plane that is stationary in an earth-fixed reference frame will be perceived as changing its slant if the movement of the observer's head causes a variation of the optic flow; (2) a surface that rotates in an earth-fixed reference frame will be perceived to be stationary, if the surface rotation is appropriately yoked to the head movement so as to generate a variation of the surface slant but not of the optic flow. Both predictions were corroborated by two experiments in which observers judged the perceived slant of a random-dot planar surface during egomotion. We found qualitatively similar biases for monocular and binocular viewing of the simulated surfaces, although, in principle, the simultaneous presence of disparity and motion cues allows for a veridical recovery of surface slant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Modeling of Perceived Surface Slant from Actively-Generated and Passively-Observed Optic Flow

We measured perceived depth from the optic flow (a) when showing a stationary physical or virtual object to observers who moved their head at a normal or slower speed, and (b) when simulating the same optic flow on a computer and presenting it to stationary observers. Our results show that perceived surface slant is systematically distorted, for both the active and the passive viewing of physic...

متن کامل

Systematic distortions of perceived planar surface motion in active vision.

Recent studies suggest that the active observer combines optic flow information with extra-retinal signals resulting from head motion. Such a combination allows, in principle, a correct discrimination of the presence or absence of surface rotation. In Experiments 1 and 2, observers were asked to perform such discrimination task while performing a lateral head shift. In Experiment 3, observers w...

متن کامل

Distortions of depth-order relations and parallelism in structure from motion.

Four experiments related human perception of depth-order relations in structure-from-motion displays to current Euclidean and affine theories of depth recovery from motion. Discrimination between parallel and nonparallel lines and relative-depth judgments was observed for orthographic projections of rigidly oscillating random-dot surfaces. We found that (1) depth-order relations were perceived ...

متن کامل

Computation of surface slant from optic flow: Orthogonal components of speed gradient can be combined

In previous work [Meese et al. (1995). Vision Research, 35, 2879-2888)] we showed that one-dimensional (1D) speed gradients are sufficient to produce a compelling impression of surface slant. Summing a 1D vertical shearing gradient or, less intuitively, a 1D horizontal shearing gradient with a random field of horizontally translating dots produces perceived slant about a horizontal axis. Simila...

متن کامل

Characterizations of Slant Ruled Surfaces in the Euclidean 3-space

In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012