d-Alanine metabolism is essential for growth and biofilm formation of Streptococcus mutans.
نویسندگان
چکیده
Part of the d-alanine (d-Ala) metabolic pathway in bacteria involves the conversion of l-alanine to d-Ala by alanine racemase and the formation of d-alanyl-d-alanine by d-alanine-d-alanine ligase, the product of which is involved in cell wall peptidoglycan synthesis. At present, drugs that target the metabolic pathway of d-Ala are already in clinical use - e.g. d-cycloserine (DCS) is used as an antibiotic against Mycobacterium tuberculosis. Streptococcus mutans is the main cariogenic bacterium in the oral cavity. Its d-Ala metabolism-associated enzymes alanine racemase and d-alanine-d-alanine ligase are encoded by the genes smu.1834 and smu.599, respectively, which may be potential targets for inhibitors. In this study, the addition of DCS blocked the d-Ala metabolic pathway in S. mutans, leading to bacterial cell wall defects, significant inhibition of bacterial growth and biofilm formation, and reductions in extracellular polysaccharide production and bacterial adhesion. However, the exogenous addition of d-Ala could reverse the inhibitory effect of DCS. Through the means of drug regulation, our study demonstrated, for the first time, the importance of d-Ala metabolism in the survival and biofilm formation of S. mutans. If the growth of S. mutans can be specifically inhibited by designing drugs that target d-Ala metabolism, then this may serve as a potential new treatment for dental caries.
منابع مشابه
Synergistic Effect of Methanolic Extracts of Rosmarinus Officinalis and Eugenia caryophyllata on Biofilm of Oral Pathogenic Bacteria
Introduction: Tooth decay is one of the most essential and costly diseases globally, which is caused by the formation of biofilms by various bacteria. This study aimed to investigate the synergistic antibacterial effect of Rosmarinus officinalis and Eugenia caryophyllataon inhibiting the growth and biofilm obtained of Streptococcus mutans and Streptococcus sanguinis bacteria. Methods: Rosmarin...
متن کاملEvaluation of inhibitory effects of Chlorella vulgaris extract on growth, proliferation and biofilm formation by Streptococcus mutans and evaluation of its toxicity
Background & Objectives: Dental caries is the most important disease caused by some bacteria specially Streptococcus Mutans from Viridans family. The aim of this study is to evaluate the inhibitory effect of Chlorella vulgaris extract on growth, proliferation, and biofilm formation of Streptococcus mutans. Materials & Methods: Microalgae Chlorella vulgaris was extracted via maceration using ch...
متن کاملLactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans
Dental caries is a biofilm-dependent oral disease and Streptococcus mutans is the known primary etiologic agent of dental caries that initiates biofilm formation on tooth surfaces. Although some Lactobacillus strains inhibit biofilm formation of oral pathogenic bacteria, the molecular mechanisms by which lactobacilli inhibit bacterial biofilm formation are not clearly understood. In this study,...
متن کاملEffect of Isolated Specific Lytic Phage against Growth and Biofilm Inhibition of Streptococcus mutans and Streptococcus sanguinis Isolated from Decayed Dental Plaque
Background and purpose: Despite advances in oral health and dental industry, tooth decay remains one of the most common oral diseases. One of the new methods to combat dental plaque, which is the main cause of caries, is using specific lytic bacteriophage. This study aimed to investigate the effect of isolated specific lytic phage against growth and biofilm inhibition of Streptococcus mutans an...
متن کاملStevioside Hydrate Effect on Growth, Acidogenicity and Adhesion of Streptococcus Mutans In Vitro
Background and aim: The present study examined the in vitro effect of pure glycoside Stevioside hydrate on pH, growth and biofilm formation of Streptococcus mutans. Method: S. mutans were supplemented with different concentrations of Stevioside hydrate. Bacterial growth, metabolism and effect on biofilm formation were examined. Results: The presence of Stevioside hydrate had no significant effe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular oral microbiology
دوره 31 5 شماره
صفحات -
تاریخ انتشار 2016