A Semantic Framework for the Security Analysis of Ethereum smart contracts
نویسندگان
چکیده
Smart contracts are programs running on cryptocurrency (e.g., Ethereum) blockchains, whose popularity stem from the possibility to perform financial transactions, such as payments and auctions, in a distributed environment without need for any trusted third party. Given their financial nature, bugs or vulnerabilities in these programs may lead to catastrophic consequences, as witnessed by recent attacks. Unfortunately, programming smart contracts is a delicate task that requires strong expertise: Ethereum smart contracts are written in Solidity, a dedicated language resembling JavaScript, and shipped over the blockchain in the EVM bytecode format. In order to rigorously verify the security of smart contracts, it is of paramount importance to formalize their semantics as well as the security properties of interest, in particular at the level of the bytecode being executed. In this paper, we present the first complete small-step semantics of EVM bytecode, which we formalize in the F* proof assistant, obtaining executable code that we successfully validate against the official Ethereum test suite. Furthermore, we formally define for the first time a number of central security properties for smart contracts, such as call integrity, atomicity, and independence from miner controlled parameters. This formalization relies on a combination of hyperand safety properties. Along this work, we identified various mistakes and imprecisions in existing semantics and verification tools for Ethereum smart contracts, thereby demonstrating once more the importance of rigorous semantic foundations for the design of security verification techniques.
منابع مشابه
A Survey of Attacks on Ethereum Smart Contracts (SoK)
Smart contracts are computer programs that can be correctly executed by a network of mutually distrusting nodes, without the need of an external trusted authority. Since smart contracts handle and transfer assets of considerable value, besides their correct execution it is also crucial that their implementation is secure against attacks which aim at stealing or tampering the assets. We study th...
متن کاملA survey of attacks on Ethereum smart contracts
Smart contracts are computer programs that can be correctly executed by a network of mutually distrusting nodes, without the need of an external trusted authority. Since smart contracts handle and transfer assets of considerable value, besides their correct execution it is also crucial that their implementation is secure against attacks which aim at stealing or tampering the assets. We study th...
متن کاملDesigning Secure Ethereum Smart Contracts: A Finite State Machine Based Approach
The adoption of blockchain-based distributed computation platforms is growing fast. Some of these platforms, such as Ethereum, provide support for implementing smart contracts, which are envisioned to have novel applications in a broad range of areas, including finance and Internet-of-Things. However, a significant number of smart contracts deployed in practice suffer from security vulnerabilit...
متن کاملTool Demonstration: FSolidM for Designing Secure Ethereum Smart Contracts
Blockchain-based distributed computing platforms enable the trusted execution of computation—defined in the form of smart contracts—without trusted agents. Smart contracts are envisioned to have a variety of applications, ranging from financial to IoT asset tracking. Unfortunately, the development of smart contracts has proven to be extremely error prone. In practice, contracts are riddled with...
متن کاملEnter the Hydra: Towards Principled Bug Bounties and Exploit-Resistant Smart Contracts
Vulnerability reward programs, a.k.a. bug bounties, are a popular tool that could help prevent software exploits. Today, however, they lack rigorous principles for setting bounty amounts and require high payments to attract economically rational hackers. Rather than claim bounties for serious bugs, hackers often sell or exploit them. We present the Hydra Framework, the first general, principled...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.08660 شماره
صفحات -
تاریخ انتشار 2018