Drl.3 governs primitive hematopoiesis in zebrafish
نویسندگان
چکیده
The molecular program controlling hematopoietic differentiation is not fully understood. Here, we describe a family of zebrafish genes that includes a novel hematopoietic regulator, draculin-like 3 (drl.3). We found that drl.3 is expressed in mesoderm-derived hematopoietic cells and is retained during erythroid maturation. Moreover, drl.3 expression correlated with erythroid development in gata1a- and spi1b-depleted embryos. Loss-of-function analysis indicated that drl.3 plays an essential role in primitive erythropoiesis and, to a lesser extent, myelopoiesis that is independent of effects on vasculature, emergence of primitive and definitive progenitor cells and cell viability. While drl.3 depletion reduced gata1a expression and inhibited erythroid development, enforced expression of gata1a was not sufficient to rescue erythropoiesis, indicating that the regulation of hematopoiesis by drl.3 extends beyond control of gata1a expression. Knockdown of drl.3 increased the proportion of less differentiated, primitive hematopoietic cells without affecting proliferation, establishing drl.3 as an important regulator of primitive hematopoietic cell differentiation.
منابع مشابه
The role of meis1 in primitive and definitive hematopoiesis during zebrafish development.
BACKGROUND The Meis1 protein represents an important cofactor for Hox and Pbx1 and is implicated in human and murine leukemias. Though much is known about the role of meis1 in leukemogenesis, its function in normal hematopoiesis remains largely unclear. Here we characterized the role of the proto-oncogene, meis1, during zebrafish primitive and definitive hematopoiesis. DESIGN AND METHODS Zebr...
متن کاملTeleost growth factor independence (gfi) genes differentially regulate successive waves of hematopoiesis.
Growth Factor Independence (Gfi) transcription factors play essential roles in hematopoiesis, differentially activating and repressing transcriptional programs required for hematopoietic stem/progenitor cell (HSPC) development and lineage specification. In mammals, Gfi1a regulates hematopoietic stem cells (HSC), myeloid and lymphoid populations, while its paralog, Gfi1b, regulates HSC, megakary...
متن کاملDifferential regulation of primitive myelopoiesis in the zebrafish by Spi-1/Pu.1 and C/ebp1.
The zebrafish has become a powerful tool for analysis of vertebrate hematopoiesis. Zebrafish, unlike mammals, have a robust primitive myeloid pathway that generates both granulocytes and macrophages. It is not clear how this unique primitive myeloid pathway relates to mammalian definitive hematopoiesis. In this study, we show that the two myeloid subsets can be distinguished using RNA in situ h...
متن کاملLysophosphatidic acid acts as a nutrient-derived developmental cue to regulate early hematopoiesis.
Primitive hematopoiesis occurs in the yolk sac blood islands during vertebrate embryogenesis, where abundant phosphatidylcholines (PC) are available as important nutrients for the developing embryo. However, whether these phospholipids also generate developmental cues to promote hematopoiesis is largely unknown. Here, we show that lysophosphatidic acid (LPA), a signaling molecule derived from P...
متن کاملNovel Insights into the Genetic Controls of Primitive and Definitive Hematopoiesis from Zebrafish Models
Hematopoiesis is a dynamic process where initiation and maintenance of hematopoietic stem cells, as well as their differentiation into erythroid, myeloid and lymphoid lineages, are tightly regulated by a network of transcription factors. Understanding the genetic controls of hematopoiesis is crucial as perturbations in hematopoiesis lead to diseases such as anemia, thrombocytopenia, or cancers,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014