Best constants and minimizers for embeddings of second order Sobolev spaces
نویسندگان
چکیده
By considering the kernels of the first two traces, four different second order Sobolev spaces may be constructed. For these spaces, embeddings into Lebesgue spaces, the best embedding constant and the possible existence of minimizers are studied. The Euler equation corresponding to some of these minimization problems is a semilinear biharmonic equation with boundary conditions involving third order derivatives: it is shown that the complementing condition is satisfied. AMS MSC: 46E35, 31B30, 35J40
منابع مشابه
Positivity, symmetry and uniqueness for minimizers of second order Sobolev inequalities
We prove that minimizers for subcritical second order Sobolev embeddings in the unit ball are unique, positive and radially symmetric. Since the proofs of the corresponding first order results cannot be extended to the present situation we apply new and recently developed techniques.
متن کاملCompact Embeddings of Broken Sobolev Spaces and Applications
In this paper we present several extensions of theoretical tools for the analysis of Discontinuous Galerkin (DG) method beyond the linear case. We define broken Sobolev spaces for Sobolev indices in [1,∞), and we prove generalizations of many techniques of classical analysis in Sobolev spaces. Our targeted application is the convergence analysis for DG discretizations of energy minimization pro...
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملOptimal Domain Spaces in Orlicz-sobolev Embeddings
We deal with Orlicz-Sobolev embeddings in open subsets of R. A necessary and sufficient condition is established for the existence of an optimal, i.e. largest possible, Orlicz-Sobolev space continuously embedded into a given Orlicz space. Moreover, the optimal Orlicz-Sobolev space is exhibited whenever it exists. Parallel questions are addressed for Orlicz-Sobolev embeddings into Orlicz spaces ...
متن کاملThe Best Constant and Extremals of the Sobolev Embeddings in Domains with Holes: the L∞ Case
Let Ω ⊂ R be a bounded, convex domain. We study the best constant of the Sobolev trace embedding W 1,∞(Ω) ↪→ L∞(∂Ω) for functions that vanish in a subset A ⊂ Ω, which we call the hole. That is, we deal with the minimization problem S A = inf ‖u‖W1,∞(Ω)/‖u‖L∞(∂Ω) for functions that verify u |A= 0. We find that there exists an optimal hole that minimizes the best constant S A among subsets of Ω o...
متن کامل