Degradation of the recalcitrant oil spill components anthracene and pyrene by a microbially driven Fenton reaction.
نویسندگان
چکیده
Oil spill components include a range of toxic saturated, aromatic and polar hydrocarbons, including pyrene and anthracene. Such contaminants harm natural ecosystems, adversely affect human health and negatively impact tourism and the fishing industries. Current physical, chemical and biological remediation technologies are often unable to completely remove recalcitrant oil spill components, which accumulate at levels greater than regulatory limits set by the Environmental Protection Agency. In the present study, a microbially driven Fenton reaction, previously shown to produce hydroxyl (HO • ) radicals that degrade chlorinated solvents and associated solvent stabilizers, was also found to degrade source zone concentrations of the oil spill components, pyrene (10 μM) and anthracene (1 μM), at initial rates of 0.82 and 0.20 μM h -1 , respectively. The pyrene- and anthracene-degrading Fenton reaction was driven by the metal-reducing facultative anaerobe Shewanella oneidensis exposed to alternating aerobic and anaerobic conditions in the presence of Fe(III). Similar to the chlorinated solvent degradation system, the pyrene and anthracene degradation systems required neither the continual supply of exogenous H 2 O 2 nor UV-induced Fe(III) reduction to regenerate Fe(II). The microbially driven Fenton reaction provides the foundation for the development of alternate ex situ and in situ oil and gas spill remediation technologies.
منابع مشابه
Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures.
Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of...
متن کاملRisk Assessment for Children Exposed to Beach Sands Impacted by Oil Spill Chemicals
Due to changes in the drilling industry, oil spills are impacting large expanses of coastlines, thereby increasing the potential for people to come in contact with oil spill chemicals. The objective of this manuscript was to evaluate the health risk to children who potentially contact beach sands impacted by oil spill chemicals from the Deepwater Horizon disaster. To identify chemicals of conce...
متن کاملTransport of Polycyclic Aromatic Hydrocarbons in a Calcareous Wetland Soil
Knowledge of transport and degradation of polycyclic aromatic hydrocarbons (PAHs) is important in assessing PAH contamination of soils and water resources. The transport of naphthalene, anthracene, pyrene and phenanthrene was determined in a contaminated calcareous soil obtained from the Shadegan wetland (Khozestan, Iran) considering a column study in laboratory conditions. The PAHs were added ...
متن کاملEfficiency of Photo-Fenton Process in Degradation of 2-Chlorophenol
Background & Aims of the Study: Phenolic compounds have been extensively used in industries for applications such as petrochemical, oil refineries, papers, plastics, steel, pharmaceuticals, textiles, coal conversion, and so on. Specified amounts of Phenolic compounds are lost in the process of their manufacturing and utilization and often cause environmental pollution problems....
متن کاملحذف پایرن از خاک های آلوده به روش اکسیداسیون فنتون اصلاح شده با استفاده از نانو ذرات آهن
Background and Aim: Problems related to conventional Fenton oxidation, including neccesity of having a low pH and production of considerable amounts of sludge, have prompted researchers to consider chelating agents to improve the pH operating range and iron nano-oxide particles to reduce excess sludge. The main objective of this study was to remove pyrene from contaminated soils by a modified F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology letters
دوره 364 21 شماره
صفحات -
تاریخ انتشار 2017