Engineered spider silk protein-based composites for drug delivery.

نویسندگان

  • John G Hardy
  • Aldo Leal-Egaña
  • Thomas R Scheibel
چکیده

Silk protein-based materials are promising materials for the delivery of drugs and other active ingredients, due to their processability, biocompatibility, and biodegradability. The preparation of films composed of an engineered spider silk protein (eADF4(C16)) in combination with either a polyester (polycaprolactone) or a polyurethane (pellethane), and their physical properties are described. The release profiles are affected by both the film composition and the presence of enzymes, and release can be observed over a period of several weeks. Such silk-based composites have potential as drug eluting biocompatible coatings or implantable devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced cellular uptake of engineered spider silk particles.

Drug delivery systems allow tissue/cell specific targeting of drugs in order to reduce total drug amounts administered to an organism and potential side effects upon systemic drug delivery. Most drug delivery systems are polymer-based, but the number of possible materials is limited since many commercially available polymers induce allergic or inflammatory responses or lack either biodegradabil...

متن کامل

Spider silk-based particles: new drug delivery vesicles for targeted cancer therapy

Bioengineered spider silk is a biomaterial that combines superb mechanical properties, biocompatibility and biodegradability with a good accessibility and simple purification procedure. Thus, spider silk has extensively been explored as material for numerous biomedical applications. Silk protein can self-assemble in the high phosphate ion concentration and under mixing conditions into spheres o...

متن کامل

Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering

Materials based on biodegradable polyesters, such as poly(butylene terephthalate) (PBT) or poly(butylene terephthalate-co-poly(alkylene glycol) terephthalate) (PBTAT), have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16)), that displays multiple carboxyli...

متن کامل

Spider Silk-CBD-Cellulose Nanocrystal Composites: Mechanism of Assembly

The fabrication of cellulose-spider silk bio-nanocomposites comprised of cellulose nanocrystals (CNCs) and recombinant spider silk protein fused to a cellulose binding domain (CBD) is described. Silk-CBD successfully binds cellulose, and unlike recombinant silk alone, silk-CBD self-assembles into microfibrils even in the absence of CNCs. Silk-CBD-CNC composite sponges and films show changes in ...

متن کامل

Biomineralization of Engineered Spider Silk

Materials based on biodegradable polyesters such as poly(butylene terephthalate) (PBT) 20 or poly(butylene terephthalate-co-poly(alkylene glycol) terephthalate) (PBTAT) have potential 21 application as pro-regenerative scaffolds for bone tissue engineering. Herein is reported the 22 preparation of films composed of PBT or PBTAT and an engineered spider silk protein, 23 (eADF4(C16)), that displa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Macromolecular bioscience

دوره 13 10  شماره 

صفحات  -

تاریخ انتشار 2013