Total coloring of pseudo-outerplanar graphs

نویسندگان

  • Xin Zhang
  • Guizhen Liu
چکیده

A graph is pseudo-outerplanar if each of its blocks has an embedding in the plane so that the vertices lie on a fixed circle and the edges lie inside the disk of this circle with each of them crossing at most one another. In this paper, the total coloring conjecture is completely confirmed for pseudoouterplanar graphs. In particular, it is proved that the total chromatic number of every pseudo-outerplanar graph with maximum degree ∆ ≥ 5 is ∆ + 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

List total coloring of pseudo-outerplanar graphs

A graph is pseudo-outerplanar if each of its blocks has an embedding in the plane so that the vertices lie on a fixed circle and the edges lie inside the disk of this circle with each of them crossing at most one another. It is proved that every pseudo-outerplanar graph with maximum degree ∆ ≥ 5 is totally (∆ + 1)-choosable.

متن کامل

On Group Choosability of Total Graphs

In this paper, we study the group and list group colorings of total graphs and present group coloring versions of the total and list total colorings conjectures.We establish the group coloring version of the total coloring conjecture for the following classes of graphs: graphs with small maximum degree, two-degenerate graphs, planner graphs with maximum degree at least 11, planner graphs withou...

متن کامل

Advice Complexity of the Online Vertex Coloring Problem

We study online algorithms with advice for the problem of coloring graphs which come as input vertex by vertex. We consider the class of all 3-colorable graphs and its sub-classes of chordal and maximal outerplanar graphs, respectively. We show that, in the case of the first two classes, for coloring optimally, essentially log2 3 advice bits per vertex (bpv) are necessary and sufficient. In the...

متن کامل

Interval Total Colorings of Bipartite Graphs

A total coloring of a graph G is a coloring of its vertices and edges such that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. The concept of total coloring was introduced by V. Vizing [15] and independently by M. Behzad [3]. The total chromatic number χ (G) is the smallest number of colors needed for total coloring of G. In 1965 V. Vizing and M. Behzad c...

متن کامل

On Coloring Squares of Outerplanar Graphs

We study vertex colorings of the square G of an outerplanar graph G. We find the optimal bound of the inductiveness, chromatic number and the clique number of G as a function of the maximum degree ∆ of G for all ∆ ∈ N. As a bonus, we obtain the optimal bound of the choosability (or the list-chromatic number) of G when ∆ ≥ 7. In the case of chordal outerplanar graphs, we classify exactly which g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1108.5009  شماره 

صفحات  -

تاریخ انتشار 2011