A hierarchy of shift equivalent sofic shifts

نویسندگان

  • Marie-Pierre Béal
  • Francesca Fiorenzi
  • Dominique Perrin
چکیده

We define new subclasses of the class of irreducible sofic shifts. These classes form an infinite hierarchy where the lowest class is the class of almost finite type shifts introduced by B. Marcus. We give effective characterizations of these classes with the syntactic semigroups of the shifts. We prove that these classes define invariants shift equivalence (and thus for conjugacy). Finally, we extend the result to the case of reducible sofic shifts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sofic and Almost of Finite Type Tree-Shifts

We introduce the notion of sofic tree-shifts which corresponds to symbolic dynamical systems of infinite trees accepted by finite tree automata. We show that, contrary to shifts of infinite sequences, there is no unique minimal deterministic irreducible tree automaton accepting an irreducible sofic tree-shift, but that there is a unique synchronized one, called the Shannon cover of the tree-shi...

متن کامل

A Hierarchy of Irreducible Sofic Shifts

We define new subclasses of the class of irreducible sofic shifts. These classes form an infinite hierarchy where the lowest class is the class of almost finite type shifts introduced by B. Marcus. We give effective characterizations of these classes with the syntactic semigroups of the shifts.

متن کامل

Quantifier Extensions of Multidimensional Sofic Shifts

We define a pair of simple combinatorial operations on subshifts, called existential and universal extensions, and study their basic properties. We prove that the existential extension of a sofic shift by another sofic shift is always sofic, and the same holds for the universal extension in one dimension. However, we also show by a construction that universal extensions of twodimensional sofic ...

متن کامل

A categorical invariant of flow equivalence of shifts

We prove that the Karoubi envelope of a shift — defined as the Karoubi envelope of the syntactic semigroup of the language of blocks of the shift — is, up to natural equivalence of categories, an invariant of flow equivalence. More precisely, we show that the action of the Karoubi envelope on the Krieger cover of the shift is a flow invariant. An analogous result concerning the Fischer cover of...

متن کامل

Cellular automata between sofic tree shifts

We study the sofic tree shifts of A ∗ , where Σ∗ is a regular rooted tree of finite rank. In particular, we give their characterization in terms of unrestricted Rabin automata. We show that if X ⊂ A ∗ is a sofic tree shift, then the configurations in X whose orbit under the shift action is finite are dense in X , and, as a consequence of this, we deduce that every injective cellular automata τ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 345  شماره 

صفحات  -

تاریخ انتشار 2005