Characterization of the vaccinia virus D10 decapping enzyme provides evidence for a two-metal-ion mechanism.

نویسندگان

  • Marie F Soulière
  • Jean-Pierre Perreault
  • Martin Bisaillon
چکیده

Decapping enzymes are required for the removal of the 5'-end cap of mRNAs. These enzymes exhibit a specific hydrolase activity, resulting in cleavage between the alpha- and beta-phosphates of the m7GpppN cap to generate both m7GDP and monophosphorylated RNA products. Decapping enzymes have been found in humans, plants and yeasts, and have been discovered more recently in vaccinia virus (D10 protein). Although experimental evidences are lacking, three-metal- and two-metal-ion mechanisms have been proposed so far for the decapping enzymes. In the present study, we performed a biochemical characterization of the interaction of bivalent cations with the vaccinia virus D10 protein. Synergistic activation of the enzyme was observed in the presence of Mg2+ and Mn2+ ions, suggesting the existence of two metal-ion-binding sites on the D10 protein. Moreover, dual-ligand titration experiments using fluorescence spectroscopy demonstrated the presence of two metal-ion-binding sites on the enzyme. A three-dimensional structural model of the active site of the enzyme was generated which highlighted the importance of three glutamate residues involved in the co-ordination of two metal ions and a water molecule. Mutational analyses confirmed the role of two glutamate residues for the binding of metal ions. We demonstrate that one metal ion is co-ordinated by Glu132, while the second metal ion is co-ordinated by Glu145. Taken together, these results support the proposed two-metal-ion mechanistic model for the D10 decapping enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insights into the molecular determinants involved in cap recognition by the vaccinia virus D10 decapping enzyme

Decapping enzymes are required for the removal of the 5'-end (m7)GpppN cap of mRNAs to allow their decay in cells. While many cap-binding proteins recognize the cap structure via the stacking of the methylated guanosine ring between two aromatic residues, the precise mechanism of cap recognition by decapping enzymes has yet to be determined. In order to get insights into the interaction of deca...

متن کامل

Characterization of a second vaccinia virus mRNA-decapping enzyme conserved in poxviruses.

Vaccinia virus (VACV) encodes enzymes that cap the 5' end of viral mRNAs, which enhances their stability and translation. Nevertheless, recent studies demonstrated that the VACV D10 protein (VACV-WR_115) decaps mRNA, an enzymatic activity not previously shown to be encoded by a virus. The decapping activity of D10 is dependent on a Nudix hydrolase motif that is also present in the VACV D9 prote...

متن کامل

The D10 decapping enzyme of vaccinia virus contributes to decay of cellular and viral mRNAs and to virulence in mice.

Posttranscriptional mechanisms are important for regulation of cellular and viral gene expression. The presence of the 5' cap structure m(7)G(5')ppp(5')Nm is a general feature of mRNAs that provides protection from exoribonuclease digestion and enhances translation. Vaccinia virus and other poxviruses encode enzymes for both cap synthesis and decapping. Decapping is mediated by two related enzy...

متن کامل

Investigation of IRES Insertion into the Genome of Recombinant MVA as a Translation Enhancer in the Context of Transcript Decapping

Recombinant modified vaccinia virus Ankara (MVA) has been used to deliver vaccine candidate antigens against infectious diseases and cancer. MVA is a potent viral vector for inducing high magnitudes of antigen-specific CD8+ T cells; however the cellular immune responses to a recombinant antigen in MVA could be further enhanced by increasing transgene expression. Previous reports showed the impo...

متن کامل

Down regulation of gene expression by the vaccinia virus D10 protein.

Vaccinia virus genes are expressed in a sequential fashion, suggesting a role for negative as well as positive regulatory mechanisms. A potential down regulator of gene expression was mapped by transfection assays to vaccinia virus open reading frame D10, which encodes a protein with no previously known function. Inhibition was independent of the promoter type used for the reporter gene, indica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 420 1  شماره 

صفحات  -

تاریخ انتشار 2009