Adaptation of microglomerular complexes in the honeybee mushroom body lip to manipulations of behavioral maturation and sensory experience.

نویسندگان

  • Sabine Krofczik
  • Uldus Khojasteh
  • Natalie Hempel de Ibarra
  • Randolf Menzel
چکیده

Worker honeybees proceed through a sequence of tasks, passing from hive and guard duties to foraging activities. The underlying neuronal changes accompanying and possibly mediating these behavioral transitions are not well understood. We studied changes in the microglomerular organization of the mushroom bodies, a brain region involved in sensory integration, learning, and memory, during adult maturation. We visualized the MB lips' microglomerular organization by applying double labeling of presynaptic projection neuron boutons and postsynaptic Kenyon cell spines, which form microglomerular complexes. Their number and density, as well as the bouton volume, were measured using 3D-based techniques. Our results show that the number of microglomerular complexes and the bouton volumes increased during maturation, independent of environmental conditions. In contrast, manipulations of behavior and sensory experience caused a decrease in the number of microglomerular complexes, but an increase in bouton volume. This may indicate an outgrowth of synaptic connections within the MB lips during honeybee maturation. Moreover, manipulations of behavioral and sensory experience led to adaptive changes, which indicate that the microglomerular organization of the MB lips is not static and determined by maturation, but rather that their organization is plastic, enabling the brain to retain its synaptic efficacy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptogenesis in the mushroom body calyx during metamorphosis in the honeybee Apis mellifera: an electron microscopic study.

The goals of this study are to determine relationships between synaptogenesis and morphogenesis within the mushroom body calyx of the honeybee Apis mellifera and to find out how the microglomerular structure characteristic for the mature calyx is established during metamorphosis. We show that synaptogenesis in the mushroom body calycal neuropile starts in early metamorphosis (stages P1-P3), bef...

متن کامل

Age-related plasticity in the synaptic ultrastructure of neurons in the mushroom body calyx of the adult honeybee Apis mellifera.

The mushroom bodies are high-order sensory integration centers in the insect brain. In the honeybee, their main sensory input regions are large, doubled calyces with modality-specific, distinct sensory neuropil regions. We investigated adult structural plasticity of input synapses in the microglomeruli of the olfactory lip and visual collar. Synapsin-immunolabeled whole-mount brains reveal that...

متن کامل

A possible structural correlate of learning performance on a colour discrimination task in the brain of the bumblebee

Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee (Bombus terrestris) brain relates to both visual learning and inter-individual dif...

متن کامل

Age-associated increase of the active zone protein Bruchpilot within the honeybee mushroom body

In honeybees, age-associated structural modifications can be observed in the mushroom bodies. Prominent examples are the synaptic complexes (microglomeruli, MG) in the mushroom body calyces, which were shown to alter their size and density with age. It is not known whether the amount of intracellular synaptic proteins in the MG is altered as well. The presynaptic protein Bruchpilot (BRP) is loc...

متن کامل

Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee.

A worker honeybee performs tasks within the hive for approximately the first 3 weeks of adult life. After this time, it becomes a forager, flying repeatedly to collect food outside of the hive for the remainder of its 5-6 week life. Previous studies have shown that foragers have an increased volume of neuropil associated with the mushroom bodies, a brain region involved in learning, memory, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental neurobiology

دوره 68 8  شماره 

صفحات  -

تاریخ انتشار 2008