Production of Cry11A and Cry11Ba toxins in Bacillus sphaericus confers toxicity towards Aedes aegypti and resistant Culex populations.

نویسندگان

  • P Servant
  • M L Rosso
  • S Hamon
  • S Poncet
  • A Del cluse
  • G Rapoport
چکیده

Cry11A from Bacillus thuringiensis subsp. israelensis and Cry11Ba from Bacillus thuringiensis subsp. jegathesan were introduced, separately and in combination, into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Two loci on the B. sphaericus chromosome were chosen as target sites for recombination: the binary toxin locus and the gene encoding the 36-kDa protease that may be responsible for the cleavage of the Mtx protein. Disruption of the protease gene did not increase the larvicidal activity of the recombinant strain against Aedes aegypti and Culex pipiens. Synthesis of the Cry11A and Cry11Ba toxins made the recombinant strains toxic to A. aegypti larvae to which the parental strain was not toxic. The strain containing Cry11Ba was more toxic than strains containing the added Cry11A or both Cry11A and Cry11Ba. The production of the two toxins together with the binary toxin did not significantly increase the toxicity of the recombinant strain to susceptible C. pipiens larvae. However, the production of Cry11A and/or Cry11Ba partially overcame the resistance of C. pipiens SPHAE and Culex quinquefasciatus GeoR to B. sphaericus strain 2297.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Bacillus sphaericus toxicity against dipteran larvae by integration, via homologous recombination, of the Cry11A toxin gene from Bacillus thuringiensis subsp. israelensis.

Integrative plasmids were constructed to enable integration of foreign DNA into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Integration of the aphA3 kanamycin resistance gene by a two-step procedure demonstrated that this strategy was applicable with antibiotic resistance selection. Hybridization experiments evidenced two copies of the operon encoding the binary toxin f...

متن کامل

Mtx toxins synergize Bacillus sphaericus and Cry11Aa against susceptible and insecticide-resistant Culex quinquefasciatus larvae.

Two mosquitocidal toxins (Mtx) of Bacillus sphaericus, which are produced during vegetative growth, were investigated for their potential to increase toxicity and reduce the expression of insecticide resistance through their interactions with other mosquitocidal proteins. Mtx-1 and Mtx-2 were fused with glutathione S-transferase and produced in Escherichia coli, after which lyophilized powders ...

متن کامل

Genetic determinants of host ranges of Bacillus sphaericus mosquito larvicidal toxins.

The 51.4-kDa-41.9-kDa binary toxin produced by different strains of Bacillus sphaericus shows differential activity toward Culex quinquefasciatus, Aedes atropalpus, and Aedes aegypti mosquito larvae. The patterns of larvicidal activity toward all three mosquito species and growth retardation in A. aegypti have been shown to be due to the 41.9-kDa protein. By using mutant toxins expressed in Esc...

متن کامل

Cyt1A from Bacillus thuringiensis synergizes activity of Bacillus sphaericus against Aedes aegypti (Diptera: Culicidae).

Bacillus sphaericus is a mosquitocidal bacterium recently developed as a commercial larvicide that is used worldwide to control pestiferous and vector mosquitoes. Whereas B. sphaericus is highly active against larvae of Culex and Anopheles mosquitoes, it is virtually nontoxic to Aedes aegypti, an important vector species. In the present study, we evaluated the capacity of the cytolytic protein ...

متن کامل

The Cry48Aa-Cry49Aa binary toxin from Bacillus sphaericus exhibits highly restricted target specificity

The Cry48Aa/Cry49Aa binary toxin of Bacillus sphaericus was recently discovered by its ability to kill Culex quinquefasciatus mosquito larvae through a novel interaction between its two components. We have investigated the target specificity of this toxin and show it to be non-toxic to coleopteran, lepidopteran and other dipteran insects, including closely related Aedes and Anopheles mosquitoes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 65 7  شماره 

صفحات  -

تاریخ انتشار 1999