Gene conversion and natural selection in the evolution of X-linked color vision genes in higher primates.
نویسندگان
چکیده
During higher primate evolution, gene conversion seems to have occurred often between the red and green photo-pigment genes, which are tandemly linked on the X chromosome. To understand this phenomenon better, intron 4 sequences of the red and green pigment genes of a male human (an Asian Indian), a male chimpanzee, and a male baboon were amplified by PCR and sequenced. The data show that the intron 4 sequences between the two genes have been strongly or completely homogenized in the three species studied. Apparently recent gene conversion events have occurred in introns 4 of the red and green pigment genes in humans and chimpanzees. Two or more conversion events may have occurred at different times in introns 4 of the two pigment genes in baboons. The divergence between the two genes is significantly lower in intron 4 than in exons 4 and 5 in each species, contrary to the usual situation that introns evolve faster than exons. It is most likely that strong natural selection for maintaining the distinct functions of exons 4 and 5 of the red and green pigment genes has acted against sequence homogenization of these exons.
منابع مشابه
Evolution and selection of trichromatic vision in primates
Trichromatic colour vision is of considerable importance to primates but is absent in other eutherian mammals. Primate colour vision is traditionally believed to have evolved for finding food in the forest. Recent work has tested the ecological importance of trichromacy to primates, both by measuring the spectral and chemical properties of food eaten in the wild, and by testing the relative for...
متن کاملColor vision of ancestral organisms of higher primates.
The color vision of mammals is controlled by photosensitive proteins called opsins. Most mammals have dichromatic color vision, but hominoids and Old World (OW) monkeys enjoy trichromatic vision, having the blue-, green-, and red-sensitive opsin genes. Most New World (NW) monkeys are either dichromatic or trichromatic, depending on the sex and genotype. Trichromacy in higher primates is believe...
متن کاملEmergence of novel color vision in mice engineered to express a human cone photopigment.
Changes in the genes encoding sensory receptor proteins are an essential step in the evolution of new sensory capacities. In primates, trichromatic color vision evolved after changes in X chromosome-linked photopigment genes. To model this process, we studied knock-in mice that expressed a human long-wavelength-sensitive (L) cone photopigment in the form of an X-linked polymorphism. Behavioral ...
متن کاملSignatures of selection and gene conversion associated with human color vision variation.
Trichromatic color vision in humans results from the combination of red, green, and blue photopigment opsins. Although color vision genes have been the targets of active molecular and psychophysical research on color vision abnormalities, little is known about patterns of normal genetic variation in these genes among global human populations. The current study presents nucleotide sequence analy...
متن کاملIntronic gene conversion in the evolution of human X-linked color vision genes.
Human red and green visual pigment genes are X-linked duplicate genes. To study their evolutionary history, introns 2 and 4 (1,987 and 1,552 bp, respectively) of human red and green pigment genes were sequenced. Surprisingly, we found that intron 4 sequences of these two genes are identical and that the intron 2 sequences differ by only 0.3%. The low divergences are unexpected because the dupli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 13 6 شماره
صفحات -
تاریخ انتشار 1996