Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum

نویسندگان

  • Yoshihiko Matsuda
  • Hiroshi Itaya
  • Yuki Kitahara
  • Natalia Maria Theresia
  • Ekaterina Aleksandrovna Kutukova
  • Yurgis Antanas Vladovich Yomantas
  • Masayo Date
  • Yoshimi Kikuchi
  • Masaaki Wachi
چکیده

BACKGROUND Among other advantages, recombinant antibody-binding fragments (Fabs) hold great clinical and commercial potential, owing to their efficient tissue penetration compared to that of full-length IgGs. Although production of recombinant Fab using microbial expression systems has been reported, yields of active Fab have not been satisfactory. We recently developed the Corynebacterium glutamicum protein expression system (CORYNEX®) and demonstrated improved yield and purity for some applications, although the system has not been applied to Fab production. RESULTS The Fab fragment of human anti-HER2 was successfully secreted by the CORYNEX® system using the conventional C. glutamicum strain YDK010, but the productivity was very low. To improve the secretion efficiency, we investigated the effects of deleting cell wall-related genes. Fab secretion was increased 5.2 times by deletion of pbp1a, encoding one of the penicillin-binding proteins (PBP1a), mediating cell wall peptidoglycan (PG) synthesis. However, this Δpbp1a mutation did not improve Fab secretion in the wild-type ATCC13869 strain. Because YDK010 carries a mutation in the cspB gene encoding a surface (S)-layer protein, we evaluated the effect of ΔcspB mutation on Fab secretion from ATCC13869. The Δpbp1a mutation showed a positive effect on Fab secretion only in combination with the ΔcspB mutation. The ΔcspBΔpbp1a double mutant showed much greater sensitivity to lysozyme than either single mutant or the wild-type strain, suggesting that these mutations reduced cell wall resistance to protein secretion. CONCLUSION There are at least two crucial permeability barriers to Fab secretion in the cell surface structure of C. glutamicum, the PG layer, and the S-layer. The ΔcspBΔpbp1a double mutant allows efficient Fab production using the CORYNEX® system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of A Novel Gene Expression System for Secretory Production of Heterologous Proteins via the General Secretory (Sec) Pathway in Corynebacterium glutamicum

Background: Corynebacterium glutamicum (C. glutamicum) is a potential host for the secretory production of the heterologous proteins. However, to this date few secretion-type gene expression systems in C. glutamicum have been developed, which limit applications of C. glutamicum in a secretory production of the heterologous proteins.Objectives: In this stu...

متن کامل

The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032.

The surface (S)-layer gene region of the Gram-positive bacterium Corynebacterium glutamicum ATCC 14067 was identified on fosmid clones, sequenced and compared with the genome sequence of C. glutamicum ATCC 13032, whose cell surface is devoid of an ordered S-layer lattice. A 5.97 kb DNA region that is absent from the C. glutamicum ATCC 13032 chromosome was identified. This region includes cspB, ...

متن کامل

Heterologous expression of the Mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium glutamicum.

By using appropriate Corynebacterium glutamicum-Escherichia coli shuttle plasmids, the gene encoding the fibronectin-binding protein 85A (85A) from Mycobacterium tuberculosis was expressed in C. glutamicum, also an actinomycete and nonsporulating gram-positive rod bacterium, which is widely used in industrial amino acid production. The 85A gene was weakly expressed in C. glutamicum under the co...

متن کامل

Deletion of cgR_1596 and cgR_2070, encoding NlpC/P60 proteins, causes a defect in cell separation in Corynebacterium glutamicum R.

In previous work, random genome deletion mutants of Corynebacterium glutamicum R were generated using the insertion sequence (IS) element IS31831 and the Cre/loxP excision system. One of these mutants, C. glutamicum strain RD41, resulting from the deletion of a 10.1-kb genomic region (DeltacgR_1595 through cgR_1604) from the WT strain, showed cell elongation, and several lines appeared on the c...

متن کامل

A mutation in the Corynebacterium glutamicum ltsA gene causes susceptibility to lysozyme, temperature-sensitive growth, and L-glutamate production.

The Corynebacterium glutamicum mutant KY9714, originally isolated as a lysozyme-sensitive mutant, does not grow at 37 degrees C. Complementation tests and DNA sequencing analysis revealed that a mutation in a single gene of 1,920 bp, ltsA (lysozyme and temperature sensitive), was responsible for its lysozyme sensitivity and temperature sensitivity. The ltsA gene encodes a protein homologous to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2014