Biliary excretion mechanism of CPT-11 and its metabolites in humans: involvement of primary active transporters.
نویسندگان
چکیده
After administration of CTP-11, a camptothecin derivative exhibiting a wide spectrum of antitumor activity, dose-limiting gastrointestinal toxicity with great interpatient variability is observed. Because the biliary excretion is a major elimination pathway for CPT-11 and its metabolites [an active metabolite, 7-ethyl-10-hydroxy-camptothecin (SN-38), and its glucuronide, SN38-Glu], several hypotheses for the toxicity involve biliary excretion. Here, we investigated whether primary active transport is involved in the biliary excretion of anionic forms of CPT-11 and its metabolites in humans using bile canalicular membrane vesicles (cMVs). Uptake of the carboxylate form of CPT-11 and the carboxylate and lactone forms of SN38-Glu by cMVs prepared from five human liver samples was ATP dependent. The concentration dependence of the ATP-dependent uptake of the carboxylate form of CPT-11 and SN38-Glu suggests the involvement of at least two saturable transport components, both with lower affinity and higher capacity than in rats. The ATP-dependent uptake of the carboxylate form of SN-38 showed a single saturable component but was detectable only in one human cMV sample. Both carboxylate and lactone forms of SN38-Glu uptake also showed a large intersample variability, although the variability was less than that observed for the carboxylate form of SN-38. On the other hand, the carboxylate form of CPT-11 exhibited much less variability. The carboxylate forms of SN38-Glu and SN-38 almost completely inhibited the ATP-dependent uptake of leukotriene C4, a well-known substrate of canalicular multispecific organic anion transporter, whereas the inhibition by the carboxylate form of CPT-11 was not as marked. Thus, multiple primary active transport systems are responsible for the biliary excretion of CPT-11 and its metabolites, and the major transport system for CPT-11 differs from that for the other two compounds. A greater degree of inter-cMV variability in the uptake of SN-38 and SN38-Glu may imply that interindividual variability in biliary excretion of these metabolites might contribute to interpatient variability in the toxicity caused by CPT-11.
منابع مشابه
Multispecific organic anion transporter is responsible for the biliary excretion of the camptothecin derivative irinotecan and its metabolites in rats.
Irinotecan, 7-ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxycamptothecin (CPT-11), is a potent anticancer drug that is increasingly used in chemotherapy. A frequent limiting side effect involves gastrointestinal toxicity (diarrhea), which is thought to be related to the biliary excretion of CPT-11 and its metabolites. Accordingly, the biliary excretion mechanisms for both the lactone and ...
متن کاملInvolvement of up-regulation of hepatic breast cancer resistance protein in decreased plasma concentration of 7-ethyl-10-hydroxycamptothecin (SN-38) by coadministration of S-1 in rats.
The safety and efficacy of combination therapy with 7-ethyl-10-[4-[1-piperidino]-1-piperidino]carbonyloxycamptothecin (CPT-11, irinotecan) and S-1 composed of tegafur, a prodrug of 5-fluorouracil, gimeracil, and potassium oxonate, have been confirmed in patients with colorectal cancer. Previously, we showed that p.o. coadministration of S-1 decreased the plasma concentration of both CPT-11 and ...
متن کاملShengjiang Xiexin Decoction Alters Pharmacokinetics of Irinotecan by Regulating Metabolic Enzymes and Transporters: A Multi-Target Therapy for Alleviating the Gastrointestinal Toxicity
Shengjiang Xiexin decoction (SXD), a classic traditional Chinese medical formula chronicled in Shang Han Lun, is used in modern clinical practice to decrease gastrointestinal toxicity induced by the chemotherapeutic drug irinotecan (CPT-11). In this study, the effect of SXD on the pharmacokinetics of CPT-11 and its active metabolites (SN-38 and SN-38G), and the underlying mechanisms were furthe...
متن کاملPharmacokinetics, metabolism, and excretion of irinotecan (CPT-11) following I.V. infusion of [(14)C]CPT-11 in cancer patients.
This study determined the disposition of irinotecan hydrochloride trihydrate (CPT-11) after i.v. infusion of 125 mg/m(2) (100 microCi) [(14)C]CPT-11 in eight patients with solid tumors. Mean +/- S.D. recovery of radioactivity in urine and feces was 95.8 +/- 2.7% (range 92.2-100.3%, n = 7) of dose. Radioactivity in blood, plasma, urine, and feces was determined for at least 168 h after dosing. F...
متن کاملPharmacokinetics, Metabolism, and Excretion of Irinotecan (cpt-11) following I.v. Infusion of [c]cpt-11 in Cancer Patients
This study determined the disposition of irinotecan hydrochloride trihydrate (CPT-11) after i.v. infusion of 125 mg/m (100 mCi) [C]CPT-11 in eight patients with solid tumors. Mean 6 S.D. recovery of radioactivity in urine and feces was 95.8 6 2.7% (range 92.2–100.3%, n 5 7) of dose. Radioactivity in blood, plasma, urine, and feces was determined for at least 168 h after dosing. Fecal excretion ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 58 22 شماره
صفحات -
تاریخ انتشار 1998