An experimental study on ferromagnetic nickel nanowires functionalized with antibodies for cell separation.

نویسندگان

  • Ning Gao
  • Hongjun Wang
  • Eui-Hyeok Yang
چکیده

In this paper, a cell separation technique has been explored using antibody-functionalized Ni nanowires. An antibody (anti-CD31) against mouse endothelial cells (MS1) was conjugated to the Ni nanowire surface through self-assembled monolayers (SAMs) and chemical covalent reactions. The measured cytotoxicity was negligible on the CD-31 antibody-functionalized nanowires by the tetrazolium salt (MTT) assay. The use of functionalized nanowires for magnetically separating MS1 cells revealed that the cell separation yield was closely related to cell concentration and the nanowire/cell ratio. Cell separation yield using functionalized Ni nanowires was compared with that using commercial magnetic beads. Considering the volume difference of the material used between the beads and nanowires, antibody-functionalized nanowires showed an obvious advantage in cell separation. Further study on the effect of Ni nanowires on MS1 cells for extended culture confirmed that cell morphology remained comparable to control cells with a lower proliferation rate. This work demonstrates that antibody-functionalized Ni nanowires provide an effective means to separate target cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Internalization of ferromagnetic nanowires by different living cells

The ability of living cells, either adherent or suspended, to internalize nickel nanowires is demonstrated for MC3T3-E1, UMR106-tumour and Marrow-Stromal cells. Nanowires were produced by electrodeposition, 20 mum long and 200 nm in diameter. Cell separation and manipulation was achieved for the three cell types. Applied magnetic field successfully oriented the internalized nanowires but no cle...

متن کامل

Single-crystalline δ-Ni2Si nanowires with excellent physical properties

In this article, we report the synthesis of single-crystalline nickel silicide nanowires (NWs) via chemical vapor deposition method using NiCl2·6H2O as a single-source precursor. Various morphologies of δ-Ni2Si NWs were successfully acquired by controlling the growth conditions. The growth mechanism of the δ-Ni2Si NWs was thoroughly discussed and identified with microscopy studies. Field emissi...

متن کامل

Controlled assembly of multi-segment nanowires by histidine-tagged peptides.

A facile technique was demonstrated for the controlled assembly and alignment of multi-segment nanowires using bioengineered polypeptides. An elastin-like-polypeptide (ELP)-based biopolymer consisting of a hexahistine cluster at each end (His(6)-ELP-His(6)) was generated and purified by taking advantage of the reversible phase transition property of ELP. The affinity between the His(6) domain o...

متن کامل

Optimization of yield in magnetic cell separations using nickel nanowires of different lengths.

Ferromagnetic nanowires are shown to perform both high yield and high purity single-step cell separations on cultures of NIH-3T3 mouse fibroblast cells. The nanowires are made by electrochemical deposition in nanoporous templates, permitting detailed control of their chemical and physical properties. When added to fibroblast cell cultures, the nanowires are internalized by the cells via the int...

متن کامل

Spin-wave quantization in ferromagnetic nickel nanowires.

The dynamical properties of uniform two-dimensional arrays of nickel nanowires have been investigated by inelastic light scattering. Multiple spin waves are observed that are in accordance with dipole-exchange theory predictions for the quantization of bulk spin waves. This first study of the spin-wave dynamics in ferromagnetic nanowire arrays reveals strong mode quantization effects and indica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanotechnology

دوره 21 10  شماره 

صفحات  -

تاریخ انتشار 2010