Hierarchical multi-label prediction of gene function
نویسندگان
چکیده
MOTIVATION Assigning functions for unknown genes based on diverse large-scale data is a key task in functional genomics. Previous work on gene function prediction has addressed this problem using independent classifiers for each function. However, such an approach ignores the structure of functional class taxonomies, such as the Gene Ontology (GO). Over a hierarchy of functional classes, a group of independent classifiers where each one predicts gene membership to a particular class can produce a hierarchically inconsistent set of predictions, where for a given gene a specific class may be predicted positive while its inclusive parent class is predicted negative. Taking the hierarchical structure into account resolves such inconsistencies and provides an opportunity for leveraging all classifiers in the hierarchy to achieve higher specificity of predictions. RESULTS We developed a Bayesian framework for combining multiple classifiers based on the functional taxonomy constraints. Using a hierarchy of support vector machine (SVM) classifiers trained on multiple data types, we combined predictions in our Bayesian framework to obtain the most probable consistent set of predictions. Experiments show that over a 105-node subhierarchy of the GO, our Bayesian framework improves predictions for 93 nodes. As an additional benefit, our method also provides implicit calibration of SVM margin outputs to probabilities. Using this method, we make function predictions for multiple proteins, and experimentally confirm predictions for proteins involved in mitosis. SUPPLEMENTARY INFORMATION Results for the 105 selected GO classes and predictions for 1059 unknown genes are available at: http://function.princeton.edu/genesite/ CONTACT [email protected].
منابع مشابه
Multi-Label Hierarchical Classification for Protein Function Prediction
Hierarchical classification is a problem with applications in many areas as protein function prediction where the dates are hierarchically structured. Therefore, it is necessary the development of algorithms able to induce hierarchical classification models. This paper presents experimenters using the algorithm for hierarchical classification called Multi-label Hierarchical Classification using...
متن کاملLearning Hierarchical Multi-label Classification Trees from Network Data
We present an algorithm for hierarchical multi-label classification (HMC) in a network context. It is able to classify instances that may belong to multiple classes at the same time and consider the hierarchical organization of the classes. It assumes that the instances are placed in a network and uses information on the network connections during the learning of the predictive model. Many real...
متن کاملProbabilistic Clustering for Hierarchical Multi-Label Classification of Protein Functions
Hierarchical Multi-Label Classification is a complex classification problem where the classes are hierarchically structured. This task is very common in protein function prediction, where each protein can have more than one function, which in turn can have more than one sub-function. In this paper, we propose a novel hierarchical multi-label classification algorithm for protein function predict...
متن کاملFully Associative Ensemble Learning for Hierarchical Multi-Label Classification
In Hierarchical Multi-label Classification (HMC), rich hierarchical information is used to improve classification performance. Global approaches learn a single model for the whole class hierarchy [3, 6]. Local approaches introduce hierarchical information to the local prediction results of all the local classifiers to obtain the global prediction results for all the nodes [2, 5]. In this paper,...
متن کاملHierarchical Multi-label Classification using Fully Associative Ensemble Learning
Traditional flat classification methods ( e.g. , binary or multi-class classification) neglect the structural information between different classes. In contrast, Hierarchical Multi-label Classification (HMC) considers the structural information embedded in the class hierarchy, and uses it to improve classification performance. In this paper, we propose a local hierarchical ensemble framework fo...
متن کاملA Hierarchical Multi-Label Classification Algorithm for Gene Function Prediction
Gene function prediction is a complicated and challenging hierarchical multi-label classification (HMC) task, in which genes may have many functions at the same time and these functions are organized in a hierarchy. This paper proposed a novel HMC algorithm for solving this problem based on the Gene Ontology (GO), the hierarchy of which is a directed acyclic graph (DAG) and is more difficult to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 22 7 شماره
صفحات -
تاریخ انتشار 2006