Effect of Dissipative and Dispersive DNG Material Coating on the Scattering Behavior of Parallel Nihility Circular Cylinders
نویسندگان
چکیده
Electromagnetic scattering from coated nihility circular cylinders, illuminated by E-polarized plane wave, is investigated using an iterative procedure. Cylinders are infinite in length. The boundary conditions are applied on the surface of each cylinder in an iterative procedure in order to solve for the field expansion coefficients. The effect of different types of the coating layers including double positive DPS and double negative DNG on the alteration of the forward and backward scattering has been observed. Specially, the effect of dispersive and dissipative DNG coating layer has been focused. Numerical verifications are presented to prove the validity of this formulation by comparison with the published literature.
منابع مشابه
Electromagnetic Scattering from a Chiral- Coated Pemc Cylinder
An analytical solution for the scattering of an electromagnetic plane wave from a perfect electromagnetic conducting (PEMC) circular cylinder coated with chiral material is derived. The PEMC cylinder as well as coating layer is of infinite length (2-D problem). Parallel polarization of the plane wave is considered for the analysis. The response of the chiral coated geometry has been observed fo...
متن کاملElectromagnetic Scattering from Conducting Circular Cylinder Coated by Metamaterials and Loaded with Helical Strips under Oblique Incidence
The asymptotic strip boundary condition (ASBC) is applied to analyze the solution of the electromagnetic scattering from a conducting cylinder coated with a homogeneous linear material layer and loaded with conducting helical strips. Such homogeneous material layer can be implemented by a conventional dielectric material, a single negative (SNG) or double negative (DNG) meta-material layer. A s...
متن کاملSpeeding up the Stress Analysis of Hollow Circular FGM Cylinders by Parallel Finite Element Method
In this article, a parallel computer program is implemented, based on Finite Element Method, to speed up the analysis of hollow circular cylinders, made from Functionally Graded Materials (FGMs). FGMs are inhomogeneous materials, which their composition gradually varies over volume. In parallel processing, an algorithm is first divided to independent tasks, which may use individual or shared da...
متن کاملTorsion in Microstructure Hollow Thick-Walled Circular Cylinder Made up of Orthotropic Material
In this paper, a numerical solution has been developed for hollow circular cylinders made up of orthotropic material which is subjected to twist using micro polar theory. The effect of twisting moment and material internal length on hollow thick-walled circular cylinder made up of micro polar orthotropic material is investigated. Finite difference method has been used to exhibit the influence o...
متن کاملSemi-analytical Solution for Time-dependent Creep Analysis of Rotating Cylinders Made of Anisotropic Exponentially Graded Material (EGM)
In the present paper, time dependent creep behavior of hollow circular rotating cylinders made of exponentially graded material (EGM) is investigated. Loading is composed of an internal pressure, a distributed temperature field due to steady state heat conduction with convective boundary condition and a centrifugal body force. All the material properties are assumed to be exponentially graded a...
متن کامل