Moving Object Detection and Classification Using Neuro-Fuzzy Approach
نویسندگان
چکیده
Public surveillance monitoring is rapidly finding its way into Intelligent Surveillance System. Street crime is increasing in recent years, which has demanded more reliable and intelligent public surveillance system. In this paper, the ability and the accuracy of an Adaptive Neuro-Fuzzy Inference System (ANFIS) was investigated for the classification of moving objects for street scene applications. The goal of this paper is to classify the moving objects prior to its communal attributes that emphasize on three major processes which are object detection, discriminative feature extraction, and classification of the target. The intended surveillance application would focus on street scene, therefore the target classes of interest are pedestrian, motorcyclist, and car. The adaptive network based on Neuro-fuzzy was independently developed for three output parameters, each of which constitute of three inputs and 27 Sugeno-rules. Extensive experimentation on significant features has been performed and the evaluation performance analysis has been quantitatively conducted on three street scene dataset, which differ in terms of background complexity. Experimental results over a public dataset and our own dataset demonstrate that the proposed technique achieves the performance of 93.1% correct classification for street scene with moving objects, with compared to the solely approaches of neural network or fuzzy.
منابع مشابه
A NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR
The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...
متن کاملFraud Detection of Credit Cards Using Neuro-fuzzy Approach Based on TLBO and PSO Algorithms
The aim of this paper is to detect bank credit cards related frauds. The large amount of data and their similarity lead to a time consuming and low accurate separation of healthy and unhealthy samples behavior, by using traditional classifications. Therefore in this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used in order to reach a more efficient and accurate algorithm. By com...
متن کاملA hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملFault Modeling, Detection and Classification using Fuzzy Logic, Kalman Filter and Genetic Neuro-Fuzzy Systems
In this paper, an efficient scheme has been proposed to model, detect and classify the fault. The modeling of fault has been proposed with the fuzzy logic using membership function. Fault detection of the unprecedented changes in system reliability and find the failed component state by classifying the faults is proposed using kalman filter and hybrid neurofuzzy computing techniques respectivel...
متن کاملAdaptive Neuro-Fuzzy Inference System application for hydrothermal alteration mapping using ASTER data
The main problem associated with the traditional approach to image classification for the mapping of hydrothermal alteration is that materials not associated with hydrothermal alteration may be erroneously classified as hydrothermally altered due to the similar spectral properties of altered and unaltered minerals. The major objective of this paper is to investigate the potential of a neuro-fuz...
متن کامل