Effect of Bile Salt Hydrolase Inhibitors on a Bile Salt Hydrolase from Lactobacillus acidophilus
نویسندگان
چکیده
Bile salt hydrolase (BSH), a widely distributed function of the gut microbiota, has a profound impact on host lipid metabolism and energy harvest. Recent studies suggest that BSH inhibitors are promising alternatives to antibiotic growth promoters (AGP) for enhanced animal growth performance and food safety. Using a high-purity BSH from Lactobacillus salivarius strain, we have identified a panel of BSH inhibitors. However, it is still unknown if these inhibitors also effectively inhibit the function of the BSH enzymes from other bacterial species with different sequence and substrate spectrum. In this study, we performed bioinformatics analysis and determined the inhibitory effect of identified BSH inhibitors on a BSH from L. acidophilus. Although the L. acidophilus BSH is phylogenetically distant from the L. salivarius BSH, sequence analysis and structure modeling indicated the two BSH enzymes contain conserved, catalytically important amino residues and domain. His-tagged recombinant BSH from L. acidophilus was further purified and used to determine inhibitory effect of specific compounds. Previously identified BSH inhibitors also exhibited potent inhibitory effects on the L. acidophilus BSH. In conclusion, this study demonstrated that the BSH from L. salivarius is an ideal candidate for screening BSH inhibitors, the promising alternatives to AGP for enhanced feed efficiency, growth performance and profitability of food animals.
منابع مشابه
Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM.
Two genes, bshA and bshB, encoding bile salt hydrolase enzymes (EC 3.5.1.24) were identified in the genome sequence of Lactobacillus acidophilus NCFM. Targeted inactivation of these genes via chromosomal insertion of an integration vector demonstrated different substrate specificities for these two enzymes.
متن کاملBile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains
Eleven strains of lactobacilli were screened for their bile salt deconjugation ability, bile salt hydrolase activity (BSH) and coprecipitation of cholesterol with deconjugated bile. Bile salt deconjugation as determined by the release of cholic acid showed that more cholic acid was liberated from the deconjugation of sodium glycocholate than sodium taurocholate, and Lactobacillus acidophilus st...
متن کاملMolecular cloning and characterization of a bile salt hydrolase from Lactobacillus acidophilus PF01.
Phenotypic screening for bile salt hydrolase (BSH) activity was performed on Lactobacillus acidophilus PF01 isolated from piglet feces. A gene encoding BSH was identified and cloned from the genomic library of L. acidophilus PF01. The bsh gene and surrounding regions were characterized by nucleotide sequence analysis and were found to contain a single open reading frame (ORF) of 951 nucleotides...
متن کاملLactobacilli and bile salt hydrolase in the murine intestinal tract.
Mice that have a complex intestinal microflora but that do not harbor lactobacilli were used to determine the contribution of lactobacilli to the total bile salt hydrolase activity in the murine intestinal tract. Bile salt hydrolase activity in the ileal contents of these mice was reduced 86% in the absence of lactobacilli and by greater than 98% in the absence of lactobacilli and enterococci c...
متن کاملCholesterol-Lowering Potentials of Lactic Acid Bacteria Based on Bile-Salt Hydrolase Activity and Effect of Potent Strains on Cholesterol Metabolism In Vitro and In Vivo
This study collected different probiotic isolates from animal and plant sources to evaluate the bile-salt hydrolase activity of probiotics in vitro. The deconjugation potential of bile acid was determined using high-performance liquid chromatography. HepG2 cells were cultured with probiotic strains with high BSH activity. The triglyceride (TG) and apolipoprotein B (apo B) secretion by HepG2 cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2014