Obtaining interpretable fuzzy models from fuzzy clustering and fuzzy regression

نویسندگان

  • Frank Höppner
  • Frank Klawonn
چکیده

Obtaining Interpretable Fuzzy Models from Fuzzy Clustering and Fuzzy Regression* Frank Hiippner Frank Klawonn University of Applied Sciences, Emden Department of Electrical Engineering and Computer Science Constantiaplatz 4 D-26723 Emden, Germany e-mail alias: [email protected] In this paper we develop an objective finctionbased clustering algorithm to build fizzy models of the Takagi-Sugeno (TS) type automatically from data. In contraPt to most of the TS models that cun be found in the literature, we decided to we very simple input-space partitions and a higher degree of consequence polynomials (quadratic). Only in this way transparency and intevretability cun be guaranteed. We also show how to derive linguistic labels for the polynomials found by the algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NOTE TO INTERPRETABLE FUZZY MODELS AND THEIR LEARNING

In this paper we turn the attention to a well developed theory of fuzzy/lin-guis-tic models that are interpretable and, moreover, can be learned from the data.We present four different situations demonstrating both interpretability as well as learning abilities of these models.

متن کامل

Prediction of melting points of a diverse chemical set using fuzzy regression tree

The classification and regression trees (CART) possess the advantage of being able to handlelarge data sets and yield readily interpretable models. In spite to these advantages, they are alsorecognized as highly unstable classifiers with respect to minor perturbations in the training data.In the other words methods present high variance. Fuzzy logic brings in an improvement in theseaspects due ...

متن کامل

Rule-base self-generation and simplification for data-driven fuzzy models

Data-driven fuzzy modeling has been used in a wide variety of applications. However, in fuzzy rule-based models acquired from numerical data, redundancy often exists in the form of redundant rules or similar fuzzy sets. This results in unnecessary structural complexity and decreases the interpretability of the system. In this paper, a rule-base self-extraction and simpli&cation method is propos...

متن کامل

Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models

The construction of interpretable Takagi-Sugeno (TS) fuzzy models by means of clustering is addressed. First, it is shown how the antecedent fuzzy sets and the corresponding consequent parameters of the TS model can be derived from clusters obtained by the Gath-Geva (GG) algorithm. To preserve the partitioning of the antecedent space, linearly transformed input variables can be used in the mode...

متن کامل

Neural Network Regressions with Fuzzy Clustering

A hybrid neural network regression models with unsupervised fuzzy clustering is proposed for clustering nonparametric regression models for datasets. In the new formulation, (i) the performance function of the neural network regression models is modified such that the fuzzy clustering weightings can be introduced in these network models; (ii) the errors of these network models are feed-backed i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000