The Zinc Dyshomeostasis Hypothesis of Alzheimer's Disease

نویسندگان

  • Travis J. A. Craddock
  • Jack A. Tuszynski
  • Deepak Chopra
  • Noel Casey
  • Lee E. Goldstein
  • Stuart R. Hameroff
  • Rudolph E. Tanzi
چکیده

Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized microtubules, their binding to MAP-tau, and molecular dynamics involved in cognition. Further, our theory supports novel AD therapeutic strategies targeting intra-neuronal zinc homeostasis and microtubule dynamics to prevent neurodegeneration and cognitive decline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Current status of metals as therapeutic targets in Alzheimer's disease.

There is accumulating evidence that interactions between beta-amyloid and copper, iron, and zinc are associated with the pathophysiology of Alzheimer's disease (AD). A significant dyshomeostasis of copper, iron, and zinc has been detected, and the mismanagement of these metals induces beta-amyloid precipitation and neurotoxicity. Chelating agents offer a potential therapeutic solution to the ne...

متن کامل

The Role of Zinc in Alzheimer's Disease

Zinc, the most abundant trace metal in the brain, has numerous functions, both in health and in disease. Zinc is released into the synaptic cleft of glutamatergic neurons alongside glutamate from where it interacts and modulates NMDA and AMPA receptors. In addition, zinc has multifactorial functions in Alzheimer's disease (AD). Zinc is critical in the enzymatic nonamyloidogenic processing of th...

متن کامل

Lipid rafts: linking prion protein to zinc transport and amyloid-β toxicity in Alzheimer's disease

Dysregulation of neuronal zinc homeostasis plays a major role in many processes related to brain aging and neurodegenerative diseases, including Alzheimer's disease (AD). Yet, despite the critical role of zinc in neuronal function, the cellular mechanisms underpinning its homeostatic control are far from clear. We reported that the cellular prion protein (PrP(C)) is involved in the uptake of zi...

متن کامل

Disruption of brain zinc homeostasis promotes the pathophysiological progress of Alzheimer's disease.

Zinc is abundant in the brain, where it plays an important role in synaptic plasticity and in learning; however, excessive zinc is toxic to neuronal cells, and dyshomeostasis of zinc in the brain is a contributing factor for Alzheimer's disease (AD). Deposition of zinc has been detected in senile plaques in the form of zinc-Aβ (β-amyloid) complexes. Recent studies have demonstrated that zinc ex...

متن کامل

Supplementation with zinc in rats enhances memory and reverses an age-dependent increase in plasma copper.

Zinc and copper are essential trace elements. Dyshomeostasis in these two metals has been observed in Alzheimer's disease, which causes profound cognitive impairment. Insulin therapy has been shown to enhance cognitive performance; however, recent data suggest that this effect may be at least in part due to the inclusion of zinc in the insulin formulation used. Zinc plays a key role in regulati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012