Insulin-like growth factor-1 overexpression in cardiomyocytes diminishes ex vivo heart functional recovery after acute ischemia.
نویسندگان
چکیده
BACKGROUND Acute insulin-like growth factor-1 administration has been shown to have beneficial effects in cardiac pathological conditions. The aim of the present study was to assess the structural and ex vivo functional impacts of long-term cardiomyocyte-specific insulin-like growth factor-1 overexpression in hearts of transgenic αMHC-IGF-1 Ea mice. METHODS Performance of isolated transgenic αMHC-IGF-1 Ea and littermate wild-type control hearts was compared under baseline conditions and in response to 20-min ischemic insult. Cardiac desmin and laminin expression patterns were determined histologically, and myocardial hydroxyproline was measured to assess collagen content. RESULTS Overexpression of insulin-like growth factor-1 did not modify expression patterns of desmin or laminin but was associated with a pronounced increase (∼30%) in cardiac collagen content (from ∼3.7 to 4.8 μg/mg). Baseline myocardial contractile function and coronary flow were unaltered by insulin-like growth factor-1 overexpression. In contrast to prior evidence of acute cardiac protection, insulin-like growth factor-1 overexpression was associated with significant impairment of acute functional response to ischemia-reperfusion. Insulin-like growth factor-1 overexpression did not modify ischemic contracture development, but postischemic diastolic dysfunction was aggravated (51±5 vs. 22±6 mmHg in nontransgenic littermates). Compared with wild-type control, recovery of pressure development and relaxation indices relative to baseline performance were significantly reduced in transgenic αMHC-IGF-1 Ea after 60-min reperfusion (34±7% vs. 62±7% recovery of +dP/dt; 35±11% vs. 57±8% recovery of -dP/dt). CONCLUSIONS Chronic insulin-like growth factor-1 overexpression is associated with reduced functional recovery after acute ischemic insult. Collagen deposition is elevated in transgenic αMHC-IGF-1 Ea hearts, but there is no change in expression of the myocardial structural proteins desmin and laminin. These findings suggest that sustained cardiac elevation of insulin-like growth factor-1 may not be beneficial in the setting of an acute ischemic insult.
منابع مشابه
Platelet-derived growth factor-BB enhances MSC-mediated cardioprotection via suppression of miR-320 expression.
Delivery of bone marrow-derived mesenchymal stem cells (MSCs) to myocardium protects ischemic tissue through the paracrine release of beneficial angiogenic and cytoprotective factors. Platelet-derived growth factor (PDGF)-BB, a potent mitogen of MSCs, is involved in the pathophysiology of ischemic heart disease. However, the role(s) of PDGF in MSC-mediated cardioprotection remains unknown. Here...
متن کاملFibroblast growth factor-1 improves cardiac functional recovery and enhances cell survival after ischemia and reperfusion
OBJECTIVES We sought to investigate the role of fibroblast growth factor (FGF)-1 during acute myocardial ischemia and reperfusion. BACKGROUND The FGFs display cardioprotective effects during ischemia and reperfusion. METHODS We investigated FGF-1–induced cardioprotection during ischemia and reperfusion and the intracellular signaling pathways responsible for these effects in an ex vivo murine s...
متن کاملSimultaneous delivery of Wharton’s jelly mesenchymal stem cells and insulin-like growth factor-1 in acute myocardial infarction
Wharton’s jelly mesenchymal stem cells (HWJMSCs) hold promise for myocardial regeneration, but optimal treatment regimen (preferably with a growth factor) is required to maximize functional benefits. The aim of this study was to explore the cardioprotective and angiogenesis effects of HWJMSCs combined with insulin-like growth factor-1 (IGF-1) in the treatment of acute myocardial infarction. Th...
متن کاملSimultaneous delivery of Wharton’s jelly mesenchymal stem cells and insulin-like growth factor-1 in acute myocardial infarction
Wharton’s jelly mesenchymal stem cells (HWJMSCs) hold promise for myocardial regeneration, but optimal treatment regimen (preferably with a growth factor) is required to maximize functional benefits. The aim of this study was to explore the cardioprotective and angiogenesis effects of HWJMSCs combined with insulin-like growth factor-1 (IGF-1) in the treatment of acute myocardial infarction. Th...
متن کاملAcute protection of ischemic heart by FGF-2: involvement of FGF-2 receptors and protein kinase C.
We examined the effect of fibroblast growth factor (FGF)-2 on myocardial resistance to injury when administered after the onset of ischemia, in vivo and ex vivo, and the role of FGF-2 receptors and protein kinase C (PKC). FGF-2 was injected into the left ventricle of rats undergoing permanent surgical coronary occlusion leading to myocardial infarction (MI). After 24 h, FGF-2-treated hearts dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology
دوره 21 1 شماره
صفحات -
تاریخ انتشار 2012