Use of Cloud Model Microphysics for Passive Microwave-Based Precipitation Retrieval: Significance of Consistency between Model and Measurement Manifolds
نویسندگان
چکیده
Precipitation estimation from passive microwave radiometry based on physically based profile retrieval algorithms must be aided by a microphysical generator providing structure information on the lower portions of the cloud, consistent with the upper-cloud structures that are sensed. One of the sources for this information is mesoscale model simulations involving explicit or parameterized microphysics. Such microphysical information can be then associated to brightness temperature signatures by using radiative transfer models, forming what are referred to as cloud–radiation databases. In this study cloud–radiation databases from three different storm simulations involving two different mesoscale models run at cloud scales are developed and analyzed. Each database relates a set of microphysical profile realizations describing the space–time properties of a given precipitating storm to multifrequency brightness temperatures associated to a measuring radiometer. In calculating the multifrequency signatures associated with the individual microphysical profiles over model space–time, the authors form what are called brightness temperature model manifolds. Their dimensionality is determined by the number of frequencies carried by the measuring radiometer. By then forming an analogous measurement manifold based on the actual radiometer observations, the radiative consistency between the model representation of a rain cloud and the measured representation are compared. In the analysis, the authors explore how various microphysical, macrophysical, and environmental factors affect the nature of the model manifolds, and how these factors produce or mitigate mismatch between the measurement and model manifolds. Various methods are examined that can be used to eliminate such mismatch. The various cloud–radiation databases are also used with a simplified profile retrieval algorithm to examine the sensitivity of the retrieved hydrometeor profiles and surface rainrates to the different microphysical, macrophysical, and environmental factors of the simulated storms. The results emphasize the need for physical retrieval algorithms to account for a number of these factors, thus preventing biased interpretation of the rain properties of precipitating storms, and minimizing rms uncertainties in the retrieved quantities.
منابع مشابه
Impact of Cloud Model Microphysics on Passive Microwave Retrievals of Cloud Properties. Part II: Uncertainty in Rain, Hydrometeor Structure, and Latent Heating Retrievals
The impact of model microphysics on the retrieval of cloud properties based on passive microwave observations was examined using a three-dimensional, nonhydrostatic, adaptive-grid cloud model to simulate a mesoscale convective system over ocean. Two microphysical schemes, based on similar bulk two-class liquid and three-class ice parameterizations, were used to simulate storms with differing am...
متن کاملImpacts of a-priori databases using six WRF microphysics schemes on passive microwave rainfall retrievals
Physically based rainfall retrievals from passive microwave sensors often make use of cloud-resolving models (CRMs) to build a priori databases of potential rain structures. EachCRM, however, has its own cloud microphysics assumptions. Hence, approximated microphysics may cause uncertainties in the a priori information resulting in inaccurate rainfall estimates. This study first builds a priori...
متن کاملWRF Simulations of the 20–22 January 2007 Snow Events over Eastern Canada: Comparison with In Situ and Satellite Observations
One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve coldseason precipitation measurements in midand high latitudes through the use of high-frequency passive microwave radiometry. For this purpose, the Weather Research and Forecasting model (WRF) with the Goddard microphysics scheme is coupled with a Satellite Data Simulation Unit (WRF–SDSU) to facilit...
متن کاملComparing microphysical/dynamical outputs by different cloud resolving models: impact on passive microwave precipitation retrieval from satellite
Mesoscale cloud resolving models (CRM’s) are often utilized to generate consistent descriptions of the microphysical structure of precipitating clouds, which are then used by physically-based algorithms for retrieving precipitation from satellite-borne microwave radiometers. However, in principle, the simulated upwelling brightness temperatures (TB’s) and derived precipitation retrievals genera...
متن کاملNeural-network approach to ground-based passive microwave estimation of precipitation intensity and extinction
A physically-based passive microwave technique is proposed to estimate precipitation intensity and extinction from ground. Multi-frequency radiometric measurements are inverted to retrieve surface rain rate, columnar precipitation contents and rainfall microwave extinction. A new inversion methodology, based on an artificial neural-network feed-forward algorithm, is evaluated and compared again...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998