Nanoindentation hardness of particles used in magnetorheological finishing (MRF).

نویسندگان

  • A B Shorey
  • K M Kwong
  • K M Johnson
  • S D Jacobs
چکیده

Knowledge of the hardness of abrasive particles that are used in polishing is a key to the fundamental understanding of the mechanisms of material removal. The magnetorheological-finishing process uses both magnetic and nonmagnetic abrasive particles during polishing. The nanohardnesses of the micrometer-sized magnetic carbonyl iron and nonmagnetic abrasive particles have been measured successfully by use of novel, to our knowledge, sample-preparation and nanoindentation techniques. Some of the results reported compare favorably with existing microhardness data found in the literature, whereas other results are new.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Magnetorheological Finishing (MRF) Process for Freeform Surfaces

One of the newly developed methods for obtaining super finished surfaces for freeform is Magnetorheological finishing (MRF). MRF is an advanced finishing process in which the grinding force is controlled by magnetic field. The material removal in MRF is governed by the magnetorheological fluid which mainly consists of carbonyl iron (CI), abrasives particles, carrier fluids and additives. MRF pr...

متن کامل

The Magnetorheological Finishing (MRF) of Potassium Dihydrogen Phosphate (KDP) Crystal with Fe3O4 Nanoparticles

The cubic Fe3O4 nanoparticles with sharp horns that display the size distribution between 100 and 200 nm are utilized to substitute the magnetic sensitive medium (carbonyl iron powders, CIPs) and abrasives (CeO2/diamond) simultaneously which are widely employed in conventional magnetorheological finishing fluid. The removal rate of this novel fluid is extremely low compared with the value of co...

متن کامل

Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics.

We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was approximately 50-100 nm thick, faceted in surface structure, and well adhered. Co...

متن کامل

Acidic magnetorheological finishing of infrared polycrystalline materials.

Chemical-vapor-deposited (CVD) ZnS is an example of a polycrystalline material that is difficult to polish smoothly via the magnetorheological finishing (MRF) technique. When MRF-polished, the internal infrastructure of the material tends to manifest on the surface as millimeter-sized "pebbles," and the surface roughness observed is considerably high. The fluid's parameters important to develop...

متن کامل

Magnetorheological Finishing-A Deterministic Process for Optics Manufacturing

Finish polishing of optics with magnetic media has evolved extensively over the past decade. Of the approaches conceived during this time, the most recently developed process is called magnetorheological finishing (MRF). In MRF, a magnetic field stiffens a fluid suspension in contact with a workpiece. The workpiece is mounted on the rotating spindle of a computer-numerically-controlled (CNC) ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 39 28  شماره 

صفحات  -

تاریخ انتشار 2000