Tissue atrophy and elevated iron concentration in the extrapyramidal motor system in Friedreich ataxia: the IMAGE-FRDA study.

نویسندگان

  • Ian H Harding
  • Parnesh Raniga
  • Martin B Delatycki
  • Monique R Stagnitti
  • Louise A Corben
  • Elsdon Storey
  • Nellie Georgiou-Karistianis
  • Gary F Egan
چکیده

INTRODUCTION Friedreich ataxia (FRDA) is an autosomal recessive disorder defined by progressive motor incoordination. FRDA results from reduced expression of the protein, frataxin, which is involved in cellular iron homeostasis and metabolism, antioxidant protection, and iron-sulfur cluster biogenesis. Disruption of one or more of these processes putatively underpins the pathophysiology of FRDA, which manifests in cell death preferentially targeted to tissues with high rates of frataxin transcription. In the brain, accumulation or redistribution of iron within, and atrophy of, the cerebellar dentate nuclei have been reported. The dentate nuclei are ironladen structures pivotal to movement coordination. However, basal ganglia and midbrain structures also have high iron content, express high levels of frataxin, and play key roles in motor regulation. Furthermore, the dentate nuclei directly innervate the thalamus and red nuclei, and indirectly project to the striatum. This biology motivates the hypothesis that iron-related pathology and/or degeneration within these extrapyramidal stations may also feature in FRDA. To test this hypothesis, we analysed tissue volume and iron concentration within the dentate nuclei, midbrain (red nuclei, substantia nigra), basal ganglia (caudate, putamen and pallidum), and thalami in individuals with FRDA and healthy controls using magnetic resonance imaging (MRI).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular and Clinical Investigation of Iranian Patients with Friedreich Ataxia

Background: Friedreich ataxia (FRDA) is an autosomal recessive disorder caused by guanine-adenine-adenine (GAA) triplet expansions in the FXN gene. Its product, frataxin, which severely reduces in FRDA patients, leads to oxidative damage in mitochondria. The purpose of this study was to evaluate the triple nucleotide repeated expansions in Iranian FRDA patients and to elucidate distinguishable ...

متن کامل

جهش جدید هموپلاسمیک T4216C میتوکندریایی در افراد ایرانی مبتلا به بیماری فردریش اتاکسیا

Introduction: The mitochondrial defects in Friedreich ataxia (FRDA) have been reported in many researches. Friedreich ataxia is an autosomal recessive neurodegenerative disorder caused by decreased expression of the Frataxin protein. Frataxin deficiency leads to excessive free radical production and dysfunction of respiratory chain complexes. Mitochondrial DNA (mtDNA) could be considered as a c...

متن کامل

Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia.

Friedreich ataxia (FRDA), the most common recessive ataxia, is characterized by degeneration of the large sensory neurons of the spinal cord and cardiomyopathy. It is caused by severely reduced levels of frataxin, a mitochondrial protein involved in iron-sulfur cluster (ISC) biosynthesis. Through a spatiotemporally controlled conditional gene-targeting approach, we have generated two mouse mode...

متن کامل

Friedreich ataxia: the oxidative stress paradox.

Friedreich ataxia (FRDA) results from a generalized deficiency of mitochondrial and cytosolic iron-sulfur protein activity initially ascribed to mitochondrial iron overload. Recent in vitro data suggest that frataxin is necessary for iron incorporation in Fe-S cluster (ISC) and heme biosynthesis. In addition, several reports suggest that continuous oxidative damage resulting from hampered super...

متن کامل

Novel Frataxin Isoforms May Contribute to the Pathological Mechanism of Friedreich Ataxia

Friedreich ataxia (FRDA) is an inherited neurodegenerative disease caused by frataxin (FXN) deficiency. The nervous system and heart are the most severely affected tissues. However, highly mitochondria-dependent tissues, such as kidney and liver, are not obviously affected, although the abundance of FXN is normally high in these tissues. In this study we have revealed two novel FXN isoforms (II...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurology, neurosurgery, and psychiatry

دوره 87 11  شماره 

صفحات  -

تاریخ انتشار 2016