Use of a prolactin-Cre/ROSA-YFP transgenic mouse provides no evidence for lactotroph transdifferentiation after weaning, or increase in lactotroph/somatotroph proportion in lactation
نویسندگان
چکیده
In rats, a shift from somatotroph dominance to lactotroph dominance during pregnancy and lactation is well reported. Somatotroph to lactotroph transdifferentiation and increased lactotroph mitotic activity are believed to account for this and associated pituitary hypertrophy. A combination of cell death and transdifferentiation away from the lactotroph phenotype has been reported to restore non-pregnant pituitary proportions after weaning. To attempt to confirm that a similar process occurs in mice, we generated and used a transgenic reporter mouse model (prolactin (PRL)-Cre/ROSA26-expression of yellow fluorescent protein (EYFP)) in which PRL promoter activity at any time resulted in permanent, stable, and highly specific EYFP. Triple immunochemistry for GH, PRL, and EYFP was used to quantify EYFP+ve, PRL-ve, and GH+ve cell populations during pregnancy and lactation, and for up to 3 weeks after weaning, and concurrent changes in cell size were estimated. At all stages, the EYFP reporter was expressed in 80% of the lactotrophs, but in fewer than 1% of other pituitary cell types, indicating that transdifferentiation from those lactotrophs where reporter expression was activated is extremely rare. Contrary to expectations, no increase in the lactotroph/somatotroph ratio was seen during pregnancy and lactation, whether assessed by immunochemistry for the reporter or PRL: findings confirmed by PRL immunochemistry in non-transgenic mice. Mammosomatotrophs were rarely encountered at the age group studied. Individual EYFP+ve cell volumes increased significantly by mid-lactation compared with virgin animals. This, in combination with a modest and non-cell type-specific estrogen-induced increase in mitotic activity, could account for pregnancy-induced changes in overall pituitary size.
منابع مشابه
Neuronal differentiation and expression of neural epitopes in pituitary adenomas.
Neural transdifferentiation is increasingly recognized in neural crest and neural stem cell tumors. Neuronal differentiation has been anecdotally described primarily in somatotroph cell adenomas associated with acromegaly, but its prevalence in adenomas and relationship to adenoma type has not been completely established. In this study we performed a retrospective morphological and immunohistoc...
متن کاملGalanin regulates prolactin release and lactotroph proliferation.
The neuropeptide galanin is predominantly expressed by the lactotrophs (the prolactin secreting cell type) in the rodent anterior pituitary and in the median eminence and paraventricular nucleus of the hypothalamus. Prolactin and galanin colocalize in the same secretory granule, the expression of both proteins is extremely sensitive to the estrogen status of the animal. The administration of es...
متن کاملEvidence that lactotrophs do not differentiate directly from somatotrophs during chick embryonic development.
It is generally accepted that, in mammals, lactotrophs differentiate from somatotrophs through an intermediate cell type, the mammosomatotroph. However, little information exists about mammosomatotrophs and their relationship with lactotroph development in non-mammalian vertebrates. We reported previously that corticosterone (CORT) can induce both somatotroph and lactotroph differentiation in c...
متن کاملSomatostatin receptor sst2 decreases cell viability and hormonal hypersecretion and reverses octreotide resistance of human pituitary adenomas.
In human somatotroph adenomas, growth hormone (GH) hypersecretion can be inhibited by somatostatin analogues such as octreotide. Unfortunately, serum GH levels reach normal values in only 60% of treated patients. The decreased sensitivity to octreotide is strongly related to a lower expression of somatostatin receptor sst2. In this present study, the sst2 gene was transferred by an adenoviral v...
متن کاملCooperative effect of E₂ and FGF2 on lactotroph proliferation triggered by signaling initiated at the plasma membrane.
In the present work, we investigated the effect of 17β-estradiol (E₂) and basic fibroblast growth factor 2 (FGF2) on the lactotroph cell-proliferative response and the related membrane-initiated signaling pathway. Anterior pituitary mixed-cell cultures of random, cycling 3-mo-old female rats were treated with 10 nM E₂, E₂ membrane-impermeable conjugated BSA (E₂-BSA), PPT (ERα agonist), and DPN ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 205 شماره
صفحات -
تاریخ انتشار 2010