Fuzzy Clustering Neural Network as Flood Forecasting Model

نویسندگان

  • Fi-John Chang
  • Yen-Chang Chen
  • Jin-Ming Liang
چکیده

Flood forecasting is always a challenge in Taiwan, which has a subtropical climate and high mountains. This paper develops a fuzzy clustering neural network (FCNN), and implements this novel structure and reasoning process for flood forecasting. The FCNN has a hybrid learning scheme; the unsupervised learning scheme employs fuzzy min-max clustering to extract information from the input data. The supervised learning scheme uses linear regression to determine the weights of FCNN. The network, which learns from examples, is a hydrological processes theory-free estimator. Most of the parameters, weights of the network, are adjusted automatically during the network training. Only one parameter needs to be justified during constructing the flood forecasting models. The onehour-ahead floods of the Lanyoung River during tropical storms are forecasted by the constructed models. Our results show that the simple but reliable model is capable of real time flood forecasting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Neuro-Fuzzy and Hybrid Wavelet-Neural Models Efficiency in River Flow Forecasting (Case Study: Mohmmad Abad Watershed)

  One of the most important issues in watersheds management is rainfall-runoff hydrological process forecasting. Using new models in this field can contribute to proper management and planning. In addition, river flow forecasting, especially in flood conditions, will allow authorities to reduce the risk of flood damage. Considering the importance of river flow forecasting in water resources ma...

متن کامل

Long-term Streamflow Forecasting by Adaptive Neuro-Fuzzy Inference System Using K-fold Cross-validation: (Case Study: Taleghan Basin, Iran)

Streamflow forecasting has an important role in water resource management (e.g. flood control, drought management, reservoir design, etc.). In this paper, the application of Adaptive Neuro Fuzzy Inference System (ANFIS) is used for long-term streamflow forecasting (monthly, seasonal) and moreover, cross-validation method (K-fold) is investigated to evaluate test-training data in the model.Then,...

متن کامل

The Neural Network-Based Forecasting in Environmental Systems

The forecasting problem is one of the main environmental problems that need efficient software tools. More concrete, it can mean meteorological/weather forecasting, air/soil/water pollution forecasting, flood forecasting and so on. Several methods based on artificial intelligence were proposed by taken into account that they can offer more informed methods that use domain specific knowledge, an...

متن کامل

Comparison of several flood forecasting models in Yangtze River

Abstract In a flood-prone region, quick and accurate flood forecasting is imperative. It can extend the lead time for issuing disaster warnings and allow sufficient time for habitants in hazardous areas to take appropriate action, such as evacuation. In this paper, two hybrid models based on recent artificial intelligence technology, namely, genetic algorithm-based artificial neural network (AN...

متن کامل

Real Time Flood Forecasting - Indian Experiences

The real time flood forecasting is one of the most effective nonstructural measures for flood management. For formulating the flood forecast in the real time, the observed meteorological and flow data are transmitted to the forecasting station through the different means of data communication which include telephone, wireless and network of telemetry stations etc. The collected meteorological a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008