Pairing Problem of Generators in Affine Kac-Moody Lie Algebras

نویسندگان

  • Li-meng XIA
  • Lei LIN
چکیده

In this paper, we discuss the pair problem of generators in affine Kac-Moody Lie algebras. For any affine Kac-Moody algebra g(A) of X l type and arbitrary nonzero imaginary root vector x, we prove that there exists some y ∈ g(A), such that g′(A) is contained in the Lie algebra generated by x and y.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost split real forms for hyperbolic Kac-Moody Lie algebras

A Borel-Tits theory was developped for almost split forms of symmetrizable Kac-Moody Lie algebras [J. of Algebra 171, 43-96 (1995)]. In this paper, we look to almost split real forms for symmetrizable hyperbolic KacMoody Lie algebras and we establish a complete list of these forms, in terms of their Satake-Tits index, for the strictly hyperbolic ones and for those which are obtained as (hyperbo...

متن کامل

On Defining Relations of the Affine Lie Superalgebras and Their Quantized Universal Enveloping Superalgebras

Introduction. In this paper, we give defining relations of the affine Lie superalgebras and defining relations of a super-version of the Drinfeld[D1]Jimbo[J] affine quantized enveloping algebras. As a result, we can exactly define the affine quantized universal enveloping superalgebras with generators and relations. Moreover we give a Drinfeld’s realization of Uh(ŝl(m|n)). For the Kac-Moody Lie...

متن کامل

Structure and Representation Theory of Infinite-dimensional Lie Algebras

Kac-Moody algebras are a generalization of the finite-dimensional semisimple Lie algebras that have many characteristics similar to the finite-dimensional ones. These possibly infinite-dimensional Lie algebras have found applications everywhere from modular forms to conformal field theory in physics. In this thesis we give two main results of the theory of Kac-Moody algebras. First, we present ...

متن کامل

Braided-Lie bialgebras associated to Kac–Moody algebras

Braided-Lie bialgebras have been introduced by Majid, as the Lie versions of Hopf algebras in braided categories. In this paper we extend previous work of Majid and of ours to show that there is a braided-Lie bialgebra associated to each inclusion of Kac–Moody bialgebras. Doing so, we obtain many new examples of infinite-dimensional braided-Lie bialgebras. We analyze further the case of untwist...

متن کامل

coordinatized by quantum tori

We use a fermionic extension of the bosonic module to obtain a class of B(0, N)-graded Lie superalgebras with nontrivial central extensions. 0 Introduction B(M − 1, N)-graded Lie superalgebras were first investigated and classified up to central extension by Benkart-Elduque (see also Garcia-Neher’s work in [GN]). Those root graded Lie superalgebras are a super-analog of root graded Lie algebras...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004