Grid Graphs, Gorenstein Polytopes, and Domino Stackings

نویسندگان

  • Matthias Beck
  • Christian Haase
  • Steven V. Sam
چکیده

We examine domino tilings of rectangular boards, which are in natural bijection with perfect matchings of grid graphs. This leads to the study of their associated perfect matching polytopes, and we present some of their properties, in particular, when these polytopes are Gorenstein. We also introduce the notion of domino stackings and present some results and several open questions. Our techniques use results from graph theory, polyhedral geometry, and enumerative combinatorics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice Polytopes in Algebra ,

[1] Victor V. Batyrev and Benjamin Nill. Multiples of lattice polytopes without interior lattice points. Moscow Mathematical Journal 7:195–207, 2007. [2] Victor V. Batyrev, Benjamin Nill. Combinatorial aspects of mirror symmetry. Contemporary Mathematics, 452:35–66, 2008. [3] Barbara Baumeister, Christian Haase, Benjamin Nill and Andreas Paffenholz. On permutation polytopes. Advances in Mathema...

متن کامل

Gorenstein Polytopes Obtained from Bipartite Graphs

Beck et. al. characterized the grid graphs whose perfect matching polytopes are Gorenstein and they also showed that for some parameters, perfect matching polytopes of torus graphs are Gorenstein. In this paper, we complement their result, that is, we characterize the torus graphs whose perfect matching polytopes are Gorenstein. Beck et. al. also gave a method to construct an infinite family of...

متن کامل

h-Vectors of Gorenstein polytopes

We show that the Ehrhart h-vector of an integer Gorenstein polytope with a unimodular triangulation satisfies McMullen’s g-theorem; in particular it is unimodal. This result generalizes a recent theorem of Athanasiadis (conjectured by Stanley) for compressed polytopes. It is derived from a more general theorem on Gorenstein affine normal monoids M: one can factor K[M] (K a field) by a “long” re...

متن کامل

Linear Programming, the Simplex Algorithm and Simple Polytopes

In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes. 

متن کامل

Roots of Ehrhart Polynomials Arising from Graphs

Several polytopes arise from finite graphs. For edge and symmetric edge polytopes, in particular, exhaustive computation of the Ehrhart polynomials not merely supports the conjecture of Beck et al. that all roots α of Ehrhart polynomials of polytopes of dimension D satisfy −D ≤ Re(α) ≤ D − 1, but also reveals some interesting phenomena for each type of polytope. Here we present two new conjectu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2009