Macropore formation in p-type silicon: toward the modeling of morphology
نویسندگان
چکیده
The formation of macropores in silicon during electrochemical etching processes has attracted much interest. Experimental evidences indicate that charge transport in silicon and in the electrolyte should realistically be taken into account in order to be able to describe the macropore morphology. However, up to now, none of the existing models has the requested degree of sophistication to reach such a goal. Therefore, we have undertaken the development of a mathematical model (phase-field model) to describe the motion and shape of the silicon/electrolyte interface during anodic dissolution. It is formulated in terms of the fundamental expression for the electrochemical potential and contains terms which describe the process of silicon dissolution during electrochemical attack in a hydrofluoric acid (HF) solution. It should allow us to explore the influence of the physical parameters on the etching process and to obtain the spatial profiles across the interface of various quantities of interest, such as the hole concentration, the current density, or the electrostatic potential. As a first step, we find that this model correctly describes the space charge region formed at the silicon side of the interface.
منابع مشابه
Copper-selective electrochemical filling of macropore arrays for through-silicon via applications
In this article, the physico-chemical and electrochemical conditions of through-silicon via formation were studied. First, macropore arrays were etched through a low doped n-type silicon wafer by anodization under illumination into a hydrofluoric acid-based electrolyte. After electrochemical etching, 'almost' through-silicon macropores were locally opened by a backside photolithographic process...
متن کاملPore size modulation in electrochemically etched macroporous p-type silicon monitored by FFT impedance spectroscopy and Raman scattering.
The understanding of the mechanisms of macropore formation in p-type Si with respect to modulation of the pore diameter is still in its infancy. In the present work, macropores with significantly modulated diameters have been produced electrochemically in p-type Si. The effect of the current density and the amount of surfactant in the etching solution are shown to influence the modulation in po...
متن کاملPore formation in p-type silicon in solutions containing different types of alcohol
Macroporous structure of silicon can be obtained with anodization in hydrogen fluoride (HF) solution. The macropore formation in the presence of alcohol was studied. Macroporous layer formation in a low-concentration HF solution is stabilized with the increasing number of carbon in alcohol. The dissolution at the topmost part of the porous layer is observed though the behavior depends upon the ...
متن کاملCorrelation Between Surface Morphology and Optical Properties of Quasi-Columnar Porous Silicon Nanostructures
In the current work, the effect of surface morphology on light emission property and absorption behavior of quasi-columnar macro-porous silicon (PS) was investigated. PS structures with different morphology were synthesized using photo-electrochemical etching method by applying different etching current densities. SEM micrographs showed that empty macro-pores size and porosity of PS layers were...
متن کاملFabrication of regular silicon microstructures by photo-electrochemical etching of silicon
In this paper photo-electrochemical etching of silicon in HF-based solutions is employed as a versatile technique for fabrication of original silicon microstructures, alternative to commonly used methods. Photo-electrochemical etching, a well known technique for regular macropore formation, has been exploited to produce a multitude of different regular silicon microstructures (microtubes, micro...
متن کامل