Fibroblast growth factor receptor 3 regulates microtubule formation and cell surface mechanical properties in the developing organ of Corti
نویسندگان
چکیده
Fibroblast Growth Factor (Fgf) signaling is involved in the exquisite cellular patterning of the developing cochlea, and is necessary for proper hearing function. Our previous data indicate that Fgf signaling disrupts actin, which impacts the surface stiffness of sensory outer hair cells (OHCs) and non-sensory supporting pillar cells (PCs) in the organ of Corti. Here, we used Atomic Force Microscopy (AFM) to measure the impact of loss of function of Fgf-receptor 3, on cytoskeletal formation and cell surface mechanical properties. We find a 50% decrease in both OHC and PC surface stiffness, and a substantial disruption in microtubule formation in PCs. Moreover, we find no change in OHC electromotility of Fgfr3-deficient mice. To further understand the regulation by Fgf-signaling on microtubule formation, we treated wild-type cochlear explants with Fgf-receptor agonist Fgf2, or antagonist SU5402, and find that both treatments lead to a significant reduction in β-Tubulin isotypes I&II. To identify downstream transcriptional targets of Fgf-signaling, we used QPCR arrays to probe 84 cytoskeletal regulators. Of the 5 genes significantly upregulated following treatment, Clasp2, Mapre2 and Mark2 impact microtubule formation. We conclude that microtubule formation is a major downstream effector of Fgf-receptor 3, and suggest this pathway impacts the formation of fluid spaces in the organ of Corti.
منابع مشابه
Cytoskeletal changes in actin and microtubules underlie the developing surface mechanical properties of sensory and supporting cells in the mouse cochlea.
Correct patterning of the inner ear sensory epithelium is essential for the conversion of sound waves into auditory stimuli. Although much is known about the impact of the developing cytoskeleton on cellular growth and cell shape, considerably less is known about the role of cytoskeletal structures on cell surface mechanical properties. In this study, atomic force microscopy (AFM) was combined ...
متن کاملSprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling.
The auditory sensory epithelium (organ of Corti), where sound waves are converted to electrical signals, comprises a highly ordered array of sensory receptor (hair) cells and nonsensory supporting cells. Here, we report that Sprouty2, which encodes a negative regulator of signaling via receptor tyrosine kinases, is required for normal hearing in mice, and that lack of SPRY2 results in dramatic ...
متن کاملاثر نیکل بر ساختار ناحیه کینازی گیرنده فاکتور رشد فیبروبلاستی نوع دو
Background & Aims: Fibroblast growth factor receptor type II (FGFR2b) is the essential factor of cellular signal transduction that regulates important biological processes including cell proliferation and differentiation. The inpairment in the signaling of these receptors is associated with several human pathology. Various factors including toxic metals can change the signaling pathways. This s...
متن کاملEffect of Adenosine Agonists on the Proliferation and Differentiation of Chick Embryo Fibroblasts in Three Dimensional Reconstituted Tissue Constructs
Previous studies indicate that organ fibroblasts play an important role in wound healing, collagen production, remodeling processes and pathogenesis of progressive heart, lung, renal and hepatic fibrotic diseases. Several studies suggest a possible inhibitory role for adenosine in the regulation of fibroblast proliferation. The effect of adenosine A2 agonists on proliferation and differentiatio...
متن کاملProliferative generation of mammalian auditory hair cells in culture
Hair cell (HC) and supporting cell (SC) productions are completed during early embryonic development of the mammalian cochlea. This study shows that acutely dissociated cells from the newborn rat organ of Corti, developed into so-called otospheres consisting of 98% nestin (+) cells when plated on a non-adherent substratum in the presence of either epidermal growth factor (EGF) or fibroblast gro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2012