Equilibrium and dynamic design principles for binding molecules engineered for reagentless biosensors.

نویسندگان

  • Seymour de Picciotto
  • Barbara Imperiali
  • Linda G Griffith
  • K Dane Wittrup
چکیده

Reagentless biosensors rely on the interaction of a binding partner and its target to generate a change in fluorescent signal using an environment-sensitive fluorophore or Förster resonance energy transfer. Binding affinity can exert a significant influence on both the equilibrium and the dynamic response characteristics of such a biosensor. We here develop a kinetic model for the dynamic performance of a reagentless biosensor. Using a sinusoidal signal for ligand concentration, our findings suggest that it is optimal to use a binding moiety whose equilibrium dissociation constant matches that of the average predicted input signal, while maximizing both the association rate constant and the dissociation rate constant at the necessary ratio to create the desired equilibrium constant. Although practical limitations constrain the attainment of these objectives, the derivation of these design principles provides guidance for improved reagentless biosensor performance and metrics for quality standards in the development of biosensors. These concepts are broadly relevant to reagentless biosensor modalities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation Process and Performance Evaluation of Engineered Microsphere Agarose Adsorbent for Application in Fluidized-bed Systems

In this research, the generation process of engineered microsphere agarose adsorbent has been explained that has surfaces with different active sites to adsorb protein nanoparticles into the fluidized-bed system. Also, excellent selectivity of protein nanoparticles, high adsorption capacity, and fast equilibrium rate through the eco-friendly polymeric adsorbents were vital aims in here. Hence, ...

متن کامل

Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study

The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...

متن کامل

Antibody-antigen exchange equilibria in a field of an external force: design of reagentless biosensors.

This correspondence presents a new strategy for detecting biological molecules that relies on competitive exchange interactions of an analyte with two-component molecular tethers attaching superparamagnetic microspheres (4 microm in diameter) to a sensor surface. The individual tethers consist of an antibody-antigen complex and are designed to selectively detect antigenic proteins in a sensitiv...

متن کامل

Fabrication of Electrochemical-DNA Biosensors for the Reagentless Detection of Nucleic Acids, Proteins and Small Molecules

As medicine is currently practiced, doctors send specimens to a central laboratory for testing and thus must wait hours or days to receive the results. Many patients would be better served by rapid, bedside tests. To this end our laboratory and others have developed a versatile, reagentless biosensor platform that supports the quantitative, reagentless, electrochemical detection of nucleic acid...

متن کامل

Fluorescent biosensors: design and application to motor proteins.

Reagentless biosensors are single molecular species that report the concentration of a specific target analyte, while having minimal impact on the system being studied. This chapter reviews such biosensors with emphasis on the ones that use fluorescence as readout and can be used for real-time assays of concentration changes with reasonably high time resolution and sensitivity. Reagentless bios...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical biochemistry

دوره 460  شماره 

صفحات  -

تاریخ انتشار 2014