Stable Principal Bundles and Reduction of Structure Group

نویسنده

  • INDRANIL BISWAS
چکیده

Let EG be a stable principal G–bundle over a compact connected Kähler manifold, where G is a connected reductive linear algebraic group defined over C. Let H ⊂ G be a complex reductive subgroup which is not necessarily connected, and let EH ⊂ EG be a holomorphic reduction of structure group. We prove that EH is preserved by the Einstein–Hermitian connection on EG. Using this we show that if EH is a minimal reductive reduction in the sense that there is no complex reductive proper subgroup of H to which EH admits a holomorphic reduction of structure group, then EH is unique in the following sense: For any other minimal reductive reduction (H ′ , EH′ ) of EG, there is some element g ∈ G such that H ′ = gHg and EH′ = EHg. As an application, we give an affirmative answer to a question posed in [BK].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A COVERING PROPERTY IN PRINCIPAL BUNDLES

Let $p:Xlo B$ be a locally trivial principal G-bundle and $wt{p}:wt{X}lo B$ be a locally trivial principal $wt{G}$-bundle. In this paper, by using the structure of principal bundles according to transition functions, we show that $wt{G}$ is a covering group of $G$ if and only if $wt{X}$ is a covering space of $X$. Then we conclude that a topological space $X$ with non-simply connected universal...

متن کامل

Principal Bundles on Projective Varieties and the Donaldson-uhlenbeck Compactification

Let H be a semisimple algebraic group. We prove the semistable reduction theorem for μ–semistable principal H–bundles over a smooth projective variety X defined over the field C. When X is a smooth projective surface and H is simple, we construct the algebro– geometric Donaldson–Uhlenbeck compactification of the moduli space of μ–semistable principal H–bundles with fixed characteristic classes ...

متن کامل

Fiber bundles and Lie algebras of top spaces

In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.

متن کامل

Universal Families on Moduli Spaces of Principal Bundles on Curves

Let H be a connected semisimple linear algebraic group defined over C and X a compact connected Riemann surface of genus at least three. Let M X (H) be the moduli space parametrising all topologically trivial stable principal H-bundles over X whose automorphism group coincides with the centre of H . It is a Zariski open dense subset of the moduli space of stable principal H-bundles. We prove th...

متن کامل

Stable Bundles and Holonomy Group Schemes of Varieties

We introduce a new category of lf-graded vector bundles on a smooth projective variety X over an algebraically closed field k. This category includes in particular all stable bundles. We then show that the category of strongly lf-graded bundles is a neutral Tannaka category. We study the associated GrothendieckTannaka group scheme. This enables us to prove an analogue of the classical Narasimha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008