Pentamidine inhibits catalytic activity of group I intron Ca.LSU by altering RNA folding
نویسندگان
چکیده
The antimicrobial agent pentamidine inhibits the self-splicing of the group I intron Ca.LSU from the transcripts of the 26S rRNA gene of Candida albicans, but the mechanism of pentamidine inhibition is not clear. We show that preincubation of the ribozyme with pentamidine enhances the inhibitory effect of the drug and alters the folding of the ribozyme in a pattern varying with drug concentration. Pentamidine at 25 microM prevents formation of the catalytically active F band conformation of the precursor RNA and alters the ribonuclease T1 cleavage pattern of Ca.LSU RNA. The effects on cleavage suggest that pentamidine mainly binds to specific sites in or near asymmetric loops of helices P2 and P2.1 on the ribozyme, as well as to the tetraloop of P9.2 and the loosely paired helix P9, resulting in an altered structure of helix P7, which contains the active site. Positively charged molecules antagonize pentamidine inhibition of catalysis and relieve the drug effect on ribozyme folding, suggesting that pentamidine binds to a magnesium binding site(s) of the ribozyme to exert its inhibitory effect.
منابع مشابه
Folding of the group I intron ribozyme from the 26S rRNA gene of Candida albicans.
Preincubation of the group I intron Ca.LSU from Candida albicans at 37 degrees C in the absence of divalent cations results in partial folding of this intron. This is indicated by increased resistance to T1 ribonuclease cleavage of many G residues in most local helices, including P4-P6, as well as the non-local helix P7, where the G binding site is located. These changes correlate with increase...
متن کاملPentamidine inhibits mitochondrial intron splicing and translation in Saccharomyces cerevisiae.
Pentamidine inhibits in vitro splicing of nuclear group I introns from rRNA genes of some pathogenic fungi and is known to inhibit mitochondrial function in yeast. Here we report that pentamidine inhibits the self-splicing of three group I and two group II introns of yeast mitochondria. Comparison of yeast strains with different configurations of mitochondrial introns (12, 5, 4, or 0 introns) r...
متن کاملMisfolding of the Azoarcus group I intron ribozyme 1 The Azoarcus Group I Intron Ribozyme Misfolds and Is Accelerated for Refolding by ATP-dependent RNA Chaperone Proteins*
Background: Group I introns are valuable for studying RNA folding and chaperone proteins. Results: A catalytic activity assay was developed and used to demonstrate two prominent phases for Azoarcus ribozyme folding. The slow phase displays hallmarks of a misfolded intermediate. Conclusion: This RNA accumulates a misfolded intermediate and interacts productively with RNA chaperones. Significance...
متن کاملDistinct sites of phosphorothioate substitution interfere with folding and splicing of the Anabaena group I intron.
Although the active site of group I introns is phylogenetically conserved, subclasses of introns have evolved different mechanisms of stabilizing the catalytic core. Large introns contain weakly conserved 'peripheral' domains that buttress the core through predicted interhelical contacts, while smaller introns use loop-helix interactions for stability. In all cases, specific and non-specific ma...
متن کاملStructure et réarrangements conformationnels au cours de l’épissage du composant ribozyme d’un intron de groupe II / Structure and conformational rearrangements during splicing of the ribozyme component of group II introns
Group II introns are a class of RNAs best known for their ribozymecatalyzed, self-splicing reaction. Under certain conditions, the introns can excise themselves from precursor mRNAs and ligate together their flanking exons, without the aid of proteins. Group II introns generally excise from pre-mRNA as a lariat, like the one formed by spliceosomal introns, similarities in the splicing mechanism...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 30 13 شماره
صفحات -
تاریخ انتشار 2002