IDEAL MATRICES . Ill
نویسندگان
چکیده
منابع مشابه
On nest modules of matrices over division rings
Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We ...
متن کاملA look-ahead Schur Algorithm
The classical Schur algorithm computes the LDL T factorization of a symmetric Toeplitz matrix in O(n 2) operations, but requires that all the principal minors of the matrix be nonsingular. Look-ahead schemes have been proposed to deal with matrices that have exactly singular principal minors 9], 11]. Unfortunately, these algorithms cannot be extended to matrices that have ill-conditioned princi...
متن کامل(0, ±1) Ideal Matrices
A (0; 1) matrix A is said to be ideal if all the vertices of the polytope Q(A) = fx : Ax 1; 0 x 1g are integral. The issue of nding a satisfactory characterization of those matrices which are minimally non-ideal is a well known open problem. An outstanding result toward the solution of this problem, due to Alfred Lehman, is the description of crucial properties of minimally non-ideal matrices. ...
متن کاملTR-2012004: Solving Linear Systems of Equations with Randomization, Augmentation and Aggregation
Seeking a basis for the null space of a rectangular and possibly rank deficient and ill conditioned matrix we apply randomization, augmentation, and aggregation to reduce our task to computations with well conditioned matrices of full rank. Our algorithms avoid pivoting and orthogonalization, preserve matrix structure and sparseness, and in the case of an ill conditioned input perform only a sm...
متن کاملSolving Linear Systems of Equations with Randomizaion, Augmentation and Aggregation
Seeking a basis for the null space of a rectangular and possibly rank deficient and ill conditioned matrix we apply randomization, augmentation, and aggregation to reduce our task to computations with well conditioned matrices of full rank. Our algorithms avoid pivoting and orthogonalization, preserve matrix structure and sparseness, and in the case of an ill conditioned input perform only a sm...
متن کامل