Biotransformation for L-ephedrine production.

نویسندگان

  • P L Rogers
  • H S Shin
  • B Wang
چکیده

L-ephedrine is widely used in pharmaceutical preparations as a decongestant and anti-asthmatic compound. One of the key intermediates in its production is L-phenylacetylcarbinol (L-PAC) which can be obtained either from plants (Ephedra sp.), chemical synthesis involving resolution of a racemic mixture, or by biotransformation of benzaldehyde using various yeasts. In the present review, recent significant improvements in the microbial biotransformation are assessed for both fed-batch and continuous processes using free and immobilised yeasts. From previous fed-batch culture data, maximal levels of L-PAC of 10-12 gl-1 were reported with yields of 55-60% theoretical based on benzaldehyde. However, recently concentrations of more than 22 gl-1 have been obtained using a wild-type strain of Candida utilis. This has been achieved through optimal control of yeast metabolism (via microprocessor control of the respiratory quotient, RQ) in order to enhance substrate pyruvate production and induce pyruvate decarboxylase (PDC) activity. Processes involving purified PDC have also been evaluated and it has been demonstrated that L-PAC levels up to 28 gl-1 can be obtained with yields of 90-95% theoretical based on the benzaldehyde added. In the review the advantages and disadvantages of the various strategies for the microbial and enzymatic production of L-PAC are compared. In view of the increasing interest in microbial biotransformations, L-PAC production provides an interesting example of enhancement through on-line control of a process involving both toxic substrate (benzaldehyde) and end-product (L-PAC, benzyl alcohol) inhibition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of the l-phenylacetylcarbinol process to substituted benzaldehydes of interest.

The large scale industrial manufacture of the nasal decongestant pseudoephedrine is typically carried out by the reductive amination of l-phenylacetylcarbinol (l-PAC), which in turn is produced via the biotransformation of benzaldehyde using yeast. In recent years there has been increasing legislative control of the supply of pseudoephedrine due to it being diverted for the clandestine producti...

متن کامل

Production of L-phenylacetylcarbinol (L-PAC) from benzaldehyde using partially purified pyruvate decarboxylase (PDC).

Biotransformation of benzaldehyde to L-phenylacetylcarbinol (L-PAC) as a key intermediate for L-ephedrine synthesis has been evaluated using pyruvate decarboxylase (PDC) partially purified from Candida utilis. PDC activity was enhanced by controlled fermentative metabolism and pulse feeding of glucose prior to the enzyme purification. With partially purified PDC, several enzymatic reactions occ...

متن کامل

Stereospecific Biotransformation of (±) Phenylethyl Propionate by Cell Cultures of Peganum harmala L.

The enzymatic potential of the cultured plant cells can be employed for bioconversion purposes. Plant enzymes are able to catalyze regio- and stereo-specific reactions, and therefore can be applied for the production of desired substances. The biotransformation of foreign substrates with suspension cells of Peganum harmala was tested with (±) phenylethyl propionate. The callus cultures of Pegan...

متن کامل

Biotransformation of Aromatic Aldehydes by Cell Cultures of Peganum harmala L. and Silybum marianum (L.) Gaertn.

Many aldehydes are important components of natural flavours. They are used in food, cosmetic, and biomedical industries in large amounts. Plant cells or microorganisms carry out their production by biotransformation, which is one of the biotechnological methods that allow them to be defined as 'natural'. Cell cultures of Silybum marianum and Peganum harmala have been studied with a view to in...

متن کامل

Biotransformation of Aromatic Aldehydes by Cell Cultures of Peganum harmala L. and Silybum marianum (L.) Gaertn.

Many aldehydes are important components of natural flavours. They are used in food, cosmetic, and biomedical industries in large amounts. Plant cells or microorganisms carry out their production by biotransformation, which is one of the biotechnological methods that allow them to be defined as 'natural'. Cell cultures of Silybum marianum and Peganum harmala have been studied with a view to in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in biochemical engineering/biotechnology

دوره 56  شماره 

صفحات  -

تاریخ انتشار 1997