Gene Copy Number Estimation from Targeted Next-Generation Sequencing of Prostate Cancer Biopsies: Analytic Validation and Clinical Qualification.
نویسندگان
چکیده
Purpose: Precise detection of copy number aberrations (CNA) from tumor biopsies is critically important to the treatment of metastatic prostate cancer. The use of targeted panel next-generation sequencing (NGS) is inexpensive, high throughput, and easily feasible, allowing single-nucleotide variant calls, but CNA estimation from this remains challenging.Experimental Design: We evaluated CNVkit for CNA identification from amplicon-based targeted NGS in a cohort of 110 fresh castration-resistant prostate cancer biopsies and used capture-based whole-exome sequencing (WES), array comparative genomic hybridization (aCGH), and FISH to explore the viability of this approach.Results: We showed that this method produced highly reproducible CNA results (r = 0.92), with the use of pooled germline DNA as a coverage reference supporting precise CNA estimation. CNA estimates from targeted NGS were comparable with WES (r = 0.86) and aCGH (r = 0.7); for key selected genes (BRCA2, MYC, PIK3CA, PTEN, and RB1), CNA estimation correlated well with WES (r = 0.91) and aCGH (r = 0.84) results. The frequency of CNAs in our population was comparable with that previously described (i.e., deep deletions: BRCA2 4.5%; RB1 8.2%; PTEN 15.5%; amplification: AR 45.5%; gain: MYC 31.8%). We also showed, utilizing FISH, that CNA estimation can be impacted by intratumor heterogeneity and demonstrated that tumor microdissection allows NGS to provide more precise CNA estimates.Conclusions: Targeted NGS and CNVkit-based analyses provide a robust, precise, high-throughput, and cost-effective method for CNA estimation for the delivery of more precise patient care. Clin Cancer Res; 23(20); 6070-7. ©2017 AACR.
منابع مشابه
I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies
The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...
متن کاملExome Enrichment and SOLiD Sequencing of Formalin Fixed Paraffin Embedded (FFPE) Prostate Cancer Tissue
Next generation sequencing (NGS) technologies have revolutionized cancer research allowing the comprehensive study of cancer using high throughput deep sequencing methodologies. These methods detect genomic alterations, nucleotide substitutions, insertions, deletions and copy number alterations. SOLiD (Sequencing by Oligonucleotide Ligation and Detection, Life Technologies) is a promising techn...
متن کاملTargeted Sequencing of Cancer-Related Genes in Colorectal Cancer Using Next-Generation Sequencing
Recent advance in sequencing technology has enabled comprehensive profiling of genetic alterations in cancer. We have established a targeted sequencing platform using next-generation sequencing (NGS) technology for clinical use, which can provide mutation and copy number variation data. NGS was performed with paired-end library enriched with exons of 183 cancer-related genes. Normal and tumor t...
متن کاملDesign and validation of a next generation sequencing assay for hereditary BRCA1 and BRCA2 mutation testing
Hereditary breast and ovarian cancer syndrome, caused by a germline pathogenic variant in the BRCA1 or BRCA2 (BRCA1/2) genes, is characterized by an increased risk for breast, ovarian, pancreatic and other cancers. Identification of those who have a BRCA1/2 mutation is important so that they can take advantage of genetic counseling, screening, and potentially life-saving prevention strategies. ...
متن کاملFACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing
Allele-specific copy number analysis (ASCN) from next generation sequencing (NGS) data can greatly extend the utility of NGS beyond the identification of mutations to precisely annotate the genome for the detection of homozygous/heterozygous deletions, copy-neutral loss-of-heterozygosity (LOH), allele-specific gains/amplifications. In addition, as targeted gene panels are increasingly used in c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 23 20 شماره
صفحات -
تاریخ انتشار 2017