Magnetic-charge ordering and phase transitions in monopole-conserved square spin ice

نویسندگان

  • Y.-L. Xie
  • Z.-Z. Du
  • Z.-B. Yan
  • J.-M. Liu
چکیده

Magnetic-charge ordering and corresponding magnetic/monopole phase transitions in spin ices are the emergent topics of condensed matter physics. In this work, we investigate a series of magnetic-charge (monopole) phase transitions in artificial square spin ice model using the conserved monopole density algorithm. It is revealed that the dynamics of low monopole density lattices is controlled by the effective Coulomb interaction and the Dirac string tension, leading to the monopole dimerization which is quite different from the dynamics of three-dimensional pyrochlore spin ice. The condensation of the monopole dimers into monopole crystals with staggered magnetic-charge order can be predicted clearly. For the high monopole density cases, the lattice undergoes two consecutive phase transitions from high-temperature paramagnetic/charge-disordered phase into staggered charge-ordered phase before eventually toward the long-range magnetically-ordered phase as the ground state which is of staggered charge order too. A phase diagram over the whole temperature-monopole density space, which exhibits a series of emergent spin and monopole ordered states, is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emergent magnetic monopoles in frustrated magnetic systems.

This Theme Issue reports papers presented at a Discussion Meeting intended to bring together theorists and experimentalists working on magnetic charge carriers, or monopoles, in both natural and artificially nanostructured spin ice lattices, and to explore related topics on Berry phase physics and domain wall motion and a possible solid-state/cosmology interface in these systems. The Discussion...

متن کامل

High pressure route to generate magnetic monopole dimers in spin ice

The gas of magnetic monopoles in spin ice is governed by one key parameter: the monopole chemical potential. A significant variation of this parameter could access hitherto undiscovered magnetic phenomena arising from monopole correlations, as observed in the analogous electrical Coulomb gas, like monopole dimerization, critical phase separation, or charge ordering. However, all known spin ices...

متن کامل

Magnetic charge and ordering in kagome spin ice.

We present a numerical study of magnetic ordering in spin ice on kagome, a two-dimensional lattice of corner-sharing triangles. The magnet has six ground states and the ordering occurs in two stages, as one might expect for a six-state clock model. In spin ice with short-range interactions up to second neighbours, there is an intermediate critical phase separated from the paramagnetic and order...

متن کامل

FePd3 as a material for studying thermally active artificial spin ice systems

We report FePd3 as a material for studying thermally active artificial spin ice (ASI) systems and use it to investigate both the square and kagome ice geometries. We readily achieve perfect ground state ordering in the square lattice and demonstrate the highest yet degree of monopole charge ordering in the kagome lattice. We find that smaller lattice constants in the kagome system generally pro...

متن کامل

Magnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice

Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization,  internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015